Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi O là tâm đường tròn \(\Rightarrow\) O là trung điểm BC
\(\stackrel\frown{BE}=\stackrel\frown{ED}=\stackrel\frown{DC}\Rightarrow\widehat{BOE}=\widehat{EOD}=\widehat{DOC}=\dfrac{180^0}{3}=60^0\)
Mà \(OD=OE=R\Rightarrow\Delta ODE\) đều
\(\Rightarrow ED=R\)
\(BN=NM=MC=\dfrac{2R}{3}\Rightarrow\dfrac{NM}{ED}=\dfrac{2}{3}\)
\(\stackrel\frown{BE}=\stackrel\frown{DC}\Rightarrow ED||BC\)
Áp dụng định lý talet:
\(\dfrac{AN}{AE}=\dfrac{MN}{ED}=\dfrac{2}{3}\Rightarrow\dfrac{EN}{AN}=\dfrac{1}{2}\)
\(\dfrac{ON}{BN}=\dfrac{OB-BN}{BN}=\dfrac{R-\dfrac{2R}{3}}{\dfrac{2R}{3}}=\dfrac{1}{2}\)
\(\Rightarrow\dfrac{EN}{AN}=\dfrac{ON}{BN}=\dfrac{1}{2}\) và \(\widehat{ENO}=\widehat{ANB}\) (đối đỉnh)
\(\Rightarrow\Delta ENO\sim ANB\left(c.g.c\right)\)
\(\Rightarrow\widehat{NBA}=\widehat{NOE}=60^0\)
Hoàn toàn tương tự, ta có \(\Delta MDO\sim\Delta MAC\Rightarrow\widehat{MCA}=\widehat{MOD}=60^0\)
\(\Rightarrow\Delta ABC\) đều
Đây là lần thứ 2 bn ghi cái đề này? Nhg chưa có lần nào đúng cả!
Sửa đề: \(\left\{{}\begin{matrix}a^3-3a^2+5a-17=0\\b^3-3b^2+5b+11=0\end{matrix}\right.\) (*)
Từ HPT (*) <=> \(\left\{{}\begin{matrix}a^3-3a^2+3a-1+2a-16=0\\b^3-3b^2+3b-1+12=0\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}\left(a-1\right)^3+2\left(a-8\right)=0\left(1\right)\\\left(b-1\right)^3+2\left(b+6\right)=0\left(2\right)\end{matrix}\right.\)
Cộng (1) với (2) vế theo vế ta có:
\(\left(a-1\right)^3+\left(b-1\right)^3+2\left(a+b-2\right)=0\)
<=> \(\left(a+b-2\right)\left[\left(a-1\right)^2+\left(b-1\right)^2-\left(a-1\right)\left(b-1\right)+2\right]=0\)
Mà \(\left(a-1\right)^2+\left(b-1\right)^2-\left(a-1\right)\left(b-1\right)+2>0\)
=> \(a+b-2=0\)
=> \(a+b=2\)
\(A=\sqrt{\left(1-\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{3}+2\right)^2}\)
\(=1-\sqrt{3}-\sqrt{3}-2\)
\(=-2\sqrt{3}-1\)
\(B=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(4-2\sqrt{3}\right)^2}\)
\(=2-\sqrt{3}+4-2\sqrt{3}\)
\(=6-3\sqrt{3}\)
\(11-6\sqrt{2}=\left(3-\sqrt{2}\right)^2\)
\(6+4\sqrt{2}=\left(2+\sqrt{2}\right)^2\)
Phiền ad có thể trình bày đầy đủ hộ em đc ko ạ? Vì em mới học sáng nay nên trình bày tắt thì em ko hiểu lắm. Em cảm ơn ạ :>