Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\(5+\sqrt{24}=5+\sqrt{6.4}=5+2\sqrt{6}=\left(\sqrt{2}\right)^2+2\sqrt{2}\sqrt{3}+\left(\sqrt{3}\right)^2=\left(\sqrt{2}+\sqrt{3}\right)^2\)
b,\(14+6\sqrt{5}=14+2.3.\sqrt{5}=3^2+2.3\sqrt{5}+\left(\sqrt{5}\right)^2=\left(3+\sqrt{5}\right)^2\)
a: \(4-2\sqrt{3}=\left(\sqrt{3}-1\right)^2\)
b; \(7+4\sqrt{3}=\left(2+\sqrt{3}\right)^2\)
c: \(13-4\sqrt{3}=\left(2\sqrt{3}-1\right)^2\)
\(5+2\sqrt{6}=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}\)
\(6+2\sqrt{5}=\sqrt{\left(\sqrt{5}+1\right)^2}\)
\(5+2\sqrt{6}=\left(\sqrt{3}+\sqrt{2}\right)^2\)
\(6+2\sqrt{5}=\left(\sqrt{5}+1\right)^2\)
a) \(A=7+2\sqrt{10}\)
\(2A=14+4\sqrt{10}\)
\(2A=10+4\sqrt{10}+4\)
\(2A=\left(\sqrt{10}+2\right)^2\)
\(A=\frac{\left(\sqrt{10}+2\right)^2}{2}\)
b) \(B=11-2\sqrt{28}=11-4\sqrt{7}\)
\(B=7-4\sqrt{7}+4\)
\(B=\left(\sqrt{7}-2\right)^2\)
c) \(C=4-2\sqrt{3}=3-2\sqrt{3}+1=\left(\sqrt{3}-1\right)^2\)
d) \(D=7+4\sqrt{3}=3+4\sqrt{3}+4=\left(\sqrt{3}+2\right)^2\)
\(12-2\sqrt{35}\)
\(=\left(\sqrt{5}\right)^2+\left(\sqrt{7}\right)^2-2\sqrt{35}\)
\(=\left(\sqrt{5}+\sqrt{7}\right)^2\)
\(7+\sqrt{40}\)
\(=\left(\sqrt{5}\right)^2+\left(\sqrt{2}\right)^2+2\sqrt{10}\)
\(=\left(\sqrt{5}+\sqrt{2}\right)^2\)
a) \(=\sqrt{a}\left(\sqrt{a}-1\right)\)
b) \(=\left(\sqrt{a}\right)^2-2\sqrt{ab}+\left(\sqrt{b}\right)^2=\left(\sqrt{a}-\sqrt{b}\right)^2\)
c) \(=\left(\sqrt{x}\right)^2-2\sqrt{x}+1=\left(\sqrt{x}-1\right)^2\)
d) \(=\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)
e) \(=\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)\)
f) \(=\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)\)
a: \(a-\sqrt{a}=\sqrt{a}\left(\sqrt{a}-1\right)\)
b: \(a-2\sqrt{ab}+b=\left(\sqrt{a}-\sqrt{b}\right)^2\)
c: \(x-2\sqrt{x}+1=\left(\sqrt{x}-1\right)^2\)
\(11-6\sqrt{2}=\left(3-\sqrt{2}\right)^2\)
\(6+4\sqrt{2}=\left(2+\sqrt{2}\right)^2\)
Phiền ad có thể trình bày đầy đủ hộ em đc ko ạ? Vì em mới học sáng nay nên trình bày tắt thì em ko hiểu lắm. Em cảm ơn ạ :>