Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^22\) là a2 nhân với 2 đó hả?
\(a,\left(a^22+2a+3\right)\left(a^22+2a-3\right)\)
\(=\left[\left(a^22+2a\right)+3\right]\left[\left(a^22+2a\right)-3\right]\)
\(=\left(a^22+2a\right)^2-9\)
\(=4a^4+8a^3+4a^2-9\)
\(b,\left(a^22+2a+3\right)\left(a^2-2a-3\right)\)
\(=2a^4-4a^3-6a^2+2a^3-4a^2-6a+3a^2-6a-9\)
\(=2a^4-2a^3-7a^2-12a-9\)
\(c,\left(a^22-2a+3\right)\left(a^2+2a-3\right)\)
\(=2a^4+4a^3-6a^2-2a^3-4a^2+6a+3a^2+6a-9\)
\(=2a^4+2a^3-7a^2+12a-9\)
a: \(=\left(-a^2-2a+3\right)^2\)
b: \(=\left(a^2+3\right)^2-4a^2\)
c: \(=-\left(a^2-2a\right)\left(a^2+2a\right)=-\left(a^4-4a^2\right)\)
a: \(=a^2-b^4\)
b: \(=\left(a^2+2a\right)^2-9\)
c: \(=a^2-\left(2a+3\right)^2\)
d: \(=a^4-\left(2a-3\right)^2\)
e: \(=\left(-a^2-2a+3\right)^2\)
g: \(=4a^2-a^4\)
Bài 1:
a) -16 +(x-3)2
<=> (x-3)2-16
<=> (x-3)2 -42
<=> (x-3-4)(x-3+4)
<=> (x-7)(x+1)
b) 64+16y+y2
<=> y2 + 2.8.y + 82
<=> (y+8)2
c) \(\dfrac{1}{8}-8x^3\)
\(\Leftrightarrow\left(\dfrac{1}{2}\right)^3-\left(2x\right)^3\)
\(\Leftrightarrow\left(\dfrac{1}{2}-2x\right)\left(\dfrac{1}{4}+x+4x^2\right)\)
d)\(x^2-x+\dfrac{1}{4}\)
\(\Leftrightarrow x^2-2.\dfrac{1}{2}.x+\left(\dfrac{1}{2}\right)^2\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2\)
e) x4 + 4x2 + 4
<=> (x2)2 + 2.2.x2 +22
<=> (x2 + 2)2
g)\(8x^3+60x^2y+150xy^2+125y^3\)
\(\Leftrightarrow\left(2x+5y\right)^3\)
1. Ta có:
\(\frac{1}{x}+\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+...+\frac{1}{\left(x+2013\right)\left(x+2014\right)}\)
\(=\frac{1}{x}+\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+...+\frac{1}{x+2013}-\frac{1}{x+2014}\)
\(=\frac{2}{x}-\frac{1}{x+2014}\)
\(=\frac{2\left(x+2014\right)}{x\left(x+2014\right)}-\frac{x}{x\left(x+2014\right)}\)
\(=\frac{2x+4028-x}{x\left(x+2014\right)}=\frac{x+4028}{x\left(x+2014\right)}\)
2a) ĐKXĐ: x \(\ne\)1 và x \(\ne\)-1
b) Ta có: A = \(\frac{x^2-2x+1}{x-1}+\frac{x^2+2x+1}{x+1}-3\)
A = \(\frac{\left(x-1\right)^2}{x-1}+\frac{\left(x+1\right)^2}{x+1}-3\)
A = \(x-1+x+1-3\)
A = \(2x-3\)
c) Với x = 3 => A = 2.3 - 3 = 3
c) Ta có: A = -2
=> 2x - 3 = -2
=> 2x = -2 + 3 = 1
=> x= 1/2
( a2 - 2a + 3 )( a2 + 2a - 3 )
= [ a2 - ( 2a - 3 ) ][ a2 + ( 2a - 3 ) ]
= ( a2 )2 - ( 2a - 3 )2
= a4 - ( 4a2 - 12a + 9 )
= a4 - 4a2 + 12a - 9
\(\left(a^2-2a+3\right)\left(a^2+2a-3\right)\)
\(=a^4+2a^3-3a^2-2a^3-4a^2+6a+3a^2+6a-9\)
\(=a^4-4a^2+12a-9\)
Đoạn đầu cái chỗ (a^2+2a+3).(...) là tách với cái kia chứ không phải 2 cái nhân với nhau đâu
1. (a2+b2+ab)2-a2b2-b2c2-c2a2
=a4+b4+a2b2+2(a2b2+ab3+a3b)-a2b2-b2c2-c2a2
=a4+b4+2a2b2+2ab3+2a3b-b2c2-c2a2
=(a2+b2)2+2ab(a2+b2)-c2(a2+b2)
=(a2+b2)[(a+b)2-c2]
=(a2+b2)(a+b+c)(a+b-c)
2. a4+b4+c4-2a2b2-2b2c2-2a2c2=(a2-b2-c2)2
3. a(b3-c3)+b(c3-a3)+c(a3-b3)
=ab3-ac3+bc3-ba3+ca3-cb3
=a3(c-b)+b3(a-c)+c3(b-a)
=a3(c-b)-b3(c-a)+c3(b-a)
=a3(c-b)-b3(c-b+b-a)+c3(b-a)
=a3(c-b)-b3(c-b)-b3(b-a)+c3(b-a)
=(c-b)(a-b)(a2+ab+b2)-(b-a)(b-c)(b2+bc+c2)
=(a-b)(c-b)(a2+ab+2b2+bc+c2)
4. a6-a4+2a3+2a2=a4(a+1)(a-1)+2a2(a+1)=(a+1)(a5-a4+2a2)=a2(a+1)(a3-a2+2)
5. (a+b)3-(a-b)3=(a+b-a+b)[(a+b)2+(a+b)(a-b)+(a-b)2]
=2b(3a2+b2)
6. x3-3x2+3x-1-y3=(x-1)3-y3=(x-1-y)[(x-1)2+(x-1)y+y2]
=(x-y-1)(x2+y2+xy-2x-y+1)
7. xm+4+xm+3-x-1=xm+3(x+1)-(x+1)=(x+1)(xm+3-1)
(Đúng nhớ like nhá !)
Minh Hải,Lê Thiên Anh,Nguyễn Huy Tú,Ace Legona,...giúp mk vs mai mk đi hk rùi