\(127^2+146\times127+73^2\)

b) <...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2018

a) \(127^2+146.127+73^2=127^2+2.73.127+73^2=\left(127+73\right)^2=40000\)b) \(9^8.2^8-\left(18^4-1\right)\left(18^4+1\right)=18^8-\left(18^8-1\right)=1\)

c) \(100^2-99^2+98^2-97^2+...+2^2-1^2\)

\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)\(=100+99+98+97+...+2+1\)

\(=\dfrac{100\left(100+1\right)}{2}=5050\)

13 tháng 6 2018

d) \(\left(20^2+18^2+16^2+...+4^2+2^2\right)-\left(19^2+17^2+15^2+...+3^2+1^2\right)\) \(=20^2-19^2+18^2-17^2+16^2-15^2+...+4^2-3^2+2^2-1^2\)

\(=\left(20-19\right)\left(20+19\right)+\left(18-17\right)\left(18+17\right)+...+\left(2-1\right)\left(2+1\right)\)\(=20+19+18+17+...+2+1\)

\(=\dfrac{20\left(20+1\right)}{2}=210\)

e) \(\dfrac{780^2-220^2}{125^2+150.125+75^2}\)

\(=\dfrac{\left(780-220\right)\left(780+220\right)}{\left(125+75\right)^2}=\dfrac{560.1000}{200}=2800\)

6 tháng 8 2020

1.

a/ \(A=2\left(x^3+y^3\right)-3\left(x^2+y^2\right)\)

\(=2\left(x+y\right)\left(x^2-xy+y^2\right)-3\left[\left(x+y\right)^2-2xy\right]\)

\(=2\left(x+y\right)\left[\left(x+y\right)^2-3xy\right]-3\left[\left(x+y\right)^2-2xy\right]\)

\(=2.1.\left[1^2-3xy\right]-3\left[1^2-2xy\right]\)

\(=2-6xy-3+6xy\)

\(=-1\)

Vậy...

2.

a. \(127^2+146.127+73^2\)

\(=127^2+2.73.127+73^2\)

\(=\left(127+73\right)^2=200^2=40000\)

b. \(9^8.2^8-\left(18^4-1\right)\left(18^4+1\right)\)

\(=18^8-18^8+1\)

\(=1\)

16 tháng 8 2018

a) \(\left(x+y\right)^2-\left(x-y\right)^2=x^2+2xy+y^2-x^2+2xy-y^2=4xy\)

16 tháng 8 2018

b) \(\left(a+b\right)^3+\left(a-b\right)^3-2a^3=a^3+3a^2b+3ab^2+b^3+a^3-3a^2b+3ab^2-b^3-2a^3\\ =6ab^2\)

8 tháng 7 2018

1272 + 146.127 + 732

= 1272 + 2 . 73 .127 + 732

= (127 + 73 ) 2

= 200 2

16 tháng 8 2020

Bài 11:

1) Sửa lại đề là: \(A=127^2+146.127+73^2\)

\(\Rightarrow A=127^2+2.127.73+73^2\)

\(\Rightarrow A=\left(127+73\right)^2\)

\(\Rightarrow A=200^2\)

\(\Rightarrow A=40000\)

Vậy \(A=40000.\)

2) Sửa lại đề là: \(B=9^8.2^8-\left(18^4-1\right).\left(18^4+1\right)\)

\(\Rightarrow B=\left(9.2\right)^8-\left[\left(18^4\right)^2-1^2\right]\)

\(\Rightarrow B=18^8-\left(18^8-1\right)\)

\(\Rightarrow B=18^8-18^8+1\)

\(\Rightarrow B=0+1\)

\(\Rightarrow B=1\)

Vậy \(B=1.\)

16 tháng 8 2020

4) \(D=\left(3+1\right).\left(3^2+1\right).\left(3^4+1\right).\left(3^8+1\right).\left(3^{16}+1\right)\)

\(\Rightarrow2D=\left(3-1\right).\left(3+1\right).\left(3^2+1\right).\left(3^4+1\right).\left(3^8+1\right).\left(3^{16}+1\right)\)

\(=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\left(3^{16}-1\right)\left(3^{16}+1\right)\)

\(=3^{32}-1\)

\(\Rightarrow D=\frac{3^{32}-1}{2}\)

15 tháng 8 2017

Bài 1:

a,\(127^2+146.127+73^2=127^2+2.127.73+73^2\)\(=\left(127+73\right)^2=200^2=40000\)

b,\(9^8.2^8-\left(18^4-1\right)\left(18^4+1\right)\)

\(18^8-\left(18^8-1\right)=1\)

\(c,100^2-99^2+98^2-97^2+...+2^2-1\)

\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)\(=199+195+...+3\)

áp dụng công thức Gauss ta đc đáp án là:10100

d, mk khỏi ghi đề dài dòng:

\(\dfrac{\left(780-220\right)\left(780+220\right)}{\left(125+75\right)^2}=\dfrac{560000}{40000}=14\)Bài 2:

\(A=\left(2-1\right)\left(2+1\right)\)\(\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(A=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)Cứ tiếp tục ta đc \(A=2^{32}-1< B=2^{32}\)

\(\left(3-1\right)C=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)...\left(3^2+16\right)\)giải như câu a đc:\(\left(3-1\right)C=3^{32}-1\)

\(\Rightarrow C=\dfrac{3^{32}-1}{3-1}=\dfrac{3^{32}-1}{2}< D=3^{32}-1\)

21 tháng 8 2017

1c,

\(=100^2-99^2+98^2-97^2+...+2^2-1^2\\ =\left(100+99\right)\left(100-99\right)+\left(98+97\right)\left(98-97\right)+...+\left(2+1\right)\left(2-1\right)\\ =\left(100+99\right)\cdot1+\left(98+97\right)\cdot1+...+\left(2+1\right)\cdot1\\ =100+99+98+97+...+2+1\\ =\dfrac{100\cdot101}{2}=5050\)

AH
Akai Haruma
Giáo viên
26 tháng 7 2018

Lời giải:

\(A=2018^2-2017.2019=2018^2-(2018-1)(2018+1)\)

\(=2018^2-(2018^2-1^2)=1\)

\(B=9^8.2^8-(18^4-1)(18^4+1)\)

\(=(9.2)^8-[(18^4)^2-1^2]\)

\(=18^8-(18^8-1)=1\)

\(C=163^2+74.163+37^2=163^2+2.37.163+37^2\)

\(=(163+37)^2=200^2=40000\)

\(D=\frac{2018^3-1}{2018^2+2019}=\frac{(2018-1)(2018^2+2018+1)}{2018^2+2019}\)

\(=\frac{2017(2018^2+2019)}{2018^2+2019}=2017\)

AH
Akai Haruma
Giáo viên
26 tháng 7 2018

Sử dụng công thức \((a-b)(a+b)=a^2-b^2\)

\(E=(2+1)(2^2+1)(2^4+1)(2^8+1)(2^{16}+1)-2^{32}\)

\(=(2-1)(2+1)(2^2+1)(2^4+1)(2^8+1)(2^{16}+1)-2^{32}\)

\(=(2^2-1)(2^2+1)(2^4+1)(2^8+1)(2^{16}+1)-2^{32}\)

\(=(2^4-1)(2^4+1)(2^8+1)(2^{16}+1)-2^{32}\)

\(=(2^8-1)(2^8+1)(2^{16}+1)-2^{32}\)

\(=(2^{16}-1)(2^{16}+1)-2^{32}\)

\(=(2^{32}-1)-2^{32}=-1\)

a,16x2-9

=42x2-32

=(4x-3)(4x+3) HĐT thứ 3

b,9a2-25b2

=32a2-52b2

=(3a-5b)(3a+5b) HĐT thứ 3

c,81-y4

=32.32-y2.y2

=(32-y2)

=(3-y)(3+y) HĐT thứ 3

d,(2x+y)2-1

=(2x+y-1)(2x+y-1) HĐT thứ 3

e,(x+y+z)2-(x-y-z)2

cái này là HĐT thứ 8 mở rộng bạn lên mạng tìm nha

7 tháng 9 2019

a) \(16x^2-9=\left(4x\right)^2-3^2=\left(4x-3\right).\left(4x+3\right)\)

b) \(9a^2-25b^4=\left(3a\right)^2-\left(5b^2\right)^2=\left(3a-5b^2\right).\left(3a+5b^2\right)\)

c) \(81-y^4=9^2-\left(y^2\right)^2=\left(9-y^2\right).\left(9+y^2\right)\)

d)\(\left(2x+y\right)^2-1=\left(2x+y\right)^2-1^2=\left(2x+y-1\right).\left(2x+y+1\right)\)