Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(x^3-3x^2+3x-1=\left(x-1\right)^3\)
b, \(1-9x+27x^2-27x^3=-\left(3x-1\right)^3\)
Mình có làm ở câu dưới rồi . Bạn tham khảo link :
https://olm.vn/hoi-dap/detail/231817932107.html
Bài 8:
b. 1+8x6y3 = 13+23(x2)3y3 = 13+(2x2y)3
= (1+2x2y)(1-2x2y+4x4y2)
e. 27x3+\(\dfrac{y^3}{8}\)\(=\left(3x\right)^3+\left(\dfrac{y}{2}\right)^3\)
= (3x+\(\dfrac{y}{2}\))(9x2-\(\dfrac{3xy}{2}\)+\(\dfrac{y^2}{4}\))
Bài 9:
c. 1- 9x +27x2 -27x3 = 13-3.12.3x+3.(3x)2-(3x)3
= (1-3x)3
d. x3+\(\dfrac{3}{2}x^2\)+\(\dfrac{3}{4}x+\dfrac{1}{8}\) = x3+\(3x^2.\dfrac{1}{2}\)+\(3x.\dfrac{1}{4}+\left(\dfrac{1}{2}\right)^3\)
= (x+\(\dfrac{1}{2}\))3
f. x2 - 2xy +y2 -4m2 +4m.n - n2 = (x2 - 2xy +y2)-((2m)2 -2.2m.n + n2)
= (x-y)2-(2m-n)2 = (x-y-2m+n)(x-y+2m-n)
a) \(\left(4x-1\right)^2-\left(3x+2\right)\left(3x-2\right)=\left(7x-1\right)\left(x+2\right)+\left(2x+1\right)^2-\left(4x^2+7\right)\)(1)
\(\Leftrightarrow\left(16x^2-8x+1\right)-\left(9x^2-4\right)=\left(7x^2+14x-x-2\right)+\left(4x^2+4x+1\right)-\left(4x^2+7\right)\)
\(\Leftrightarrow16x^2-8x+1-9x^2+4=7x^2+13x-2+4x^2+4x+1-4x^2-7\)
\(\Leftrightarrow7x^2-8x+5=7x^2+17x-8\)
\(\Leftrightarrow7x^2-8x-7x^2-17x=-8-5\)
\(\Leftrightarrow-25x=-13\)
\(\Leftrightarrow x=\dfrac{13}{25}\)
Vậy tập nghiệm phương trình (1) là \(S=\left\{\dfrac{13}{25}\right\}\)
Lời giải:
a) $x^3+3x^2y+x+3xy^2+y+y^3$
$=(x^3+3x^2y+3xy^2+y^3)+(x+y)$
$=(x+y)^3+(x+y)=(x+y)[(x+y)^2+1]$
b) $x^3+y(1-3x^2)+x(3y^2-1)-y^3$
$=(x^3-3x^2y+3xy^2-y^3)-(x-y)$
$=(x-y)^3-(x-y)=(x-y)[(x-y)^2-1]=(x-y)(x-y-1)(x-y+1)$
c)
$27x^3+27x^2+9x+1=(3x+1)^3$
d)
$x(x+1)^2+x(x-5)-5(x+1)^2$
$=x(x+1)^2-5(x+1)^2+x(x-5)$
$=(x-5)(x+1)^2+x(x-5)=(x-5)[(x+1)^2+x]$
$=(x-5)(x^2+3x+2)=(x-5)(x+1)(x+2)$
a) Ta có: \(x^2+2x+1\)
\(=x^2+2\cdot x\cdot1+1^2\)
\(=\left(x+1\right)^2\)
b) Ta có: \(1-2y+y^2\)
\(=y^2-2\cdot y\cdot1+1^2\)
\(=\left(y-1\right)^2\)
c) Ta có: \(x^3-3x^2+3x-1\)
\(=x^3-x^2-2x^2+2x+x-1\)
\(=x^2\left(x-1\right)-2x\left(x-1\right)+\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2-2x+1\right)\)
\(=\left(x-1\right)^3\)
d) Ta có: \(27+27x+9x^2+x^3\)
\(=x^3+3x^2+6x^2+18x+9x+27\)
\(=x^2\left(x+3\right)+6x\left(x+3\right)+9\left(x+3\right)\)
\(=\left(x+3\right)\left(x^2+6x+9\right)\)
\(=\left(x+3\right)^3\)
e) Ta có: \(8-125x^3\)
\(=2^3-\left(5x\right)^3\)
\(=\left(2-5x\right)\left(4+10x+25x^2\right)\)
f) Ta có: \(64x^3+\frac{1}{8}\)
\(=\left(4x\right)^3+\left(\frac{1}{2}\right)^3\)
\(=\left(4x+\frac{1}{2}\right)\left(16x^2-2x+\frac{1}{4}\right)\)
g) Ta có: \(1-x^2y^4\)
\(=1^2-\left(xy^2\right)^2\)
\(=\left(1-xy^2\right)\left(1+xy^2\right)\)
a) \(x^2+2x+1=x^2+2x.1+1^2=\left(x+1\right)^2\)
b) \(1-2y+y^2=1^2-2y.1+y^2=\left(1-y\right)^2\)
c) \(x^3-3x^2+3x-1=\left(x-1\right)^3\)
d) \(27+27x+9x^2+x^3=3^3+3.3^2x+3.3x^2+x^3=\left(3+x\right)^3\)
e) \(8-125x^3=2^3-\left(5x\right)^3=\left(2-5x\right)\left[2^2+2.5x+\left(5x\right)^2\right]=\left(2-5x\right)\left(4+10x+25x^2\right)\)
f) \(64x^3+\frac{1}{8}=\left(4x\right)^3+\left(\frac{1}{2}\right)^3=\left(4x+\frac{1}{2}\right)\left[\left(4x\right)^2-4x.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]=\left(4x+\frac{1}{2}\right)\left(16x^2-2x+\frac{1}{4}\right)\)
Ko chắc ạ!
a) 5x-15y=5x-3.5.y=5(x-3y)
c) 14xy(xy+28x)
d) \(\dfrac{2}{7}\left(3x-1\right)\left(x-1\right)\)
e) (x-1)3
f) (x+y-2x)(x+y+2x)=(y-x)(3x+y)
g) (3x+\(\dfrac{1}{2}\))(9x2+\(\dfrac{3}{2}x\)+\(\dfrac{1}{4}\))
h) (x+y-x+y)\(\left[\left(x+y\right)^2-\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\right]\)
2a)
(x+1)(x2+2x)=0
(x+1)x(x+2)=0
\(\left[{}\begin{matrix}x+1=0\\x=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=0\\x=-2\end{matrix}\right.\)
a) \(x^4+4x^2+4=\left(x^2\right)^2+2.x^2.2+2^2\\ =\left(x^2+2\right)^2\)
b) \(9x^4+24x^2y^2+16y^4=\left(3x^2\right)^2+2.3x^2.4y^2+\left(4y^2\right)^2\\ =\left(3x^2+4y^2\right)^2\)
c) \(27x^3+27x^2+3x+1=\left(3x\right)^3+3.\left(3x\right)^2.1+3.3x.1^2+1^3\\ =\left(3x+1\right)^3\)
d) \(x^3-3x^2+3x-1=x^3-3.x^2.1+3.x.1^2-1^3\\ =\left(x-1\right)^3\)
\(a,x^4+4x^2+4=\left(x^2\right)^2+2.x^2.2+2^2=\left(x^2+2\right)^2\\ b,9x^4+24x^2y^2+16y^4=\left(3x^2\right)^2+2.3x^2.4y^2+\left(4y^2\right)^2=\left(3x^2+4y^2\right)^2\\ d,x^3-3x^2+3x-1=\left(x-1\right)^3\)
Em xem lại câu c