Viết các biểu thức sau dưới dạng bình phương một hiệu

...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2016

Bài 1:

1 (x+3)2=x2+6x+9

2

a, 2x2(3x-5x3)+10x5-5x3=6x3-10x5+10x5-5x3=x3

b, (x+3)(x2-3x+9)+(x-9)(x+3)=(x3+27)+(x2-6x-27)=x3+x2-6x

Bài 2:

a, x2-25x=0

\(\Leftrightarrow x\left(x-25\right)=0\)

\(\Leftrightarrow\begin{cases}x=0\\x-25=0\end{cases}\)

\(\Leftrightarrow\begin{cases}x=0\\x=25\end{cases}\)

b, (4x-1)2-9=0

\(\Leftrightarrow\left(4x-1-3\right)\left(4x-1+3\right)=0\)

\(\Leftrightarrow\left(4x-4\right)\left(4x+2\right)=0\)

\(\Leftrightarrow4\left(x-1\right)2\left(2x+1\right)=0\)

\(\Leftrightarrow8\left(x-1\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\begin{cases}x-1=0\\2x+1=0\end{cases}\)

\(\Leftrightarrow\begin{cases}x=1\\x=\frac{-1}{2}\end{cases}\)

Bài 3:

a, 3x2-18x+27=3(x2-6x+9)=3(x-3)2

b, xy-y2-x+y=y(x-y)-(x-y)=(y-1)(x-y)

c, x2-5x-6=x2-6x+x-6=x(x-6)+(x-6)=(x+1)(x-6)

Bài 4:

a, ( 12x3y3-3x2y3+4x2y4):6x2y3=(12x3y3:6x2y3)-(3x2y3:6x2y3)+(4x2y4:6x2y3)

=2x-1/2 + 2/3y

b, bạn ơi mình không biết cách vẽ đường kẻ để chia ý , nếu bạn biết thì chỉ cho mình rồi mình làm cho

Bài 5 :

b, A = x(2x-3)

A= 2x2-3x

A= 2(x2-3/2x)

A= 2(x2-2x3/4+9/16-9/16)

A=2[(x-3/4)2-9/16]

A=2(x-3/4)2-9/8

A=2(x-3/4)2+(-9/8)

Vì (x-3/4)2 \(\ge\)0 \(\forall x\)

-> 2(x-3/4)2 \(\ge0\forall x\)

-> 2(x-3/4)2+(-9/8)\(\ge-\frac{9}{8}\forall x\)

Vậy MinA= -9/8

6 tháng 1 2017

Bài 1:

1. Khai triển hằng đẳng thức

(x+3)2 = x2+6x+9

2. Thực hiện phép tính

a) 2x2(3x-5x3)+10x5-5x3

=6x3-10x5+10x5-5x3

=x3

b)(x+3)(x2-3x+9)+(x-9)(x+3)

=(x3+27)+(x2+3x-9x-27)

=x3+27+x2+3x-9x-27

=x3+x2-6x

Bài 2:

a) x2-25x=0

\(\Leftrightarrow\)x(x-25)=0

\(\Leftrightarrow\) \(\left[\begin{matrix}x=0\\x-25=0\end{matrix}\right.\)

\(\Leftrightarrow\left[\begin{matrix}x=0\\x=25\end{matrix}\right.\)

Vậy x=0 hoặc x=25

b)(4x-1)2 - 9=0

\(\Leftrightarrow\)(4x-1+3)(4x-1-3)=0

\(\Leftrightarrow\)(4x+2)(4x-4)=0

\(\Leftrightarrow\)2(2x+1)(2x-2)=0

\(\Leftrightarrow\left[\begin{matrix}2x+1=0\\2x-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[\begin{matrix}x=\frac{-1}{2}\\x=1\end{matrix}\right.\)

Vậy x=1 hoặc x=\(\frac{-1}{2}\)

Bài 3:

a) 3x2-18x+27

=3(x2-6x+9)

=3(x-3)2

b) xy-y2-x+y

=(xy-y2)-(x-y)

=y(x-y)-(x-y)

=(x-y)(y-1)

c) x2-5x-6

=x2-6x+x-6

=(x2-6x)+(x-6)

=x(x-6)+(x-6

=(x-6)(x+1)

Bài 4:

a) (12x3y3-3x2y3+4x2y4) : 6x2y3

=x2y3(12x-3+4y): 6x2y3

=(12x-3+4y) : 6

= (12x : 6)-(3 : 6)+(4y : 6)

=2x-\(\frac{1}{2}\)+\(\frac{2y}{3}\)

b) (6x3-19x2+23x-12) : (2x-3)

=(3x2-5x+4)(2x-3) : (2x-3)

=3x2-5x+4

16 tháng 7 2019

Bài 1:

a) \(\frac{4}{9}x^2-y^2=\left(\frac{2}{3}x-y\right)\left(\frac{2}{3}x+y\right)\)

b) \(x^2-5=\left(x-\sqrt{5}\right)\left(x+\sqrt{5}\right)\)

c) \(4x^2+6x+9=\left(2x+2\right)^2+5\)ko hiểu ???

d) \(\frac{1}{9}x^2-\frac{4}{3}xy+4=\left(\frac{1}{3}x\right)^2-2.\frac{1}{3}x.2+2^2=\left(\frac{1}{3}x-2\right)^2\)

16 tháng 7 2019

Bài 2:

a) \(\left(\frac{1}{2}x-\frac{1}{3}y\right)\left(\frac{1}{2}x+\frac{1}{3}y\right)=\frac{1}{4}x^2-\frac{1}{9}y^2\)

b) \(\left(2x-\frac{1}{3}y\right)\left(4x^2+\frac{2}{3}xy+\frac{1}{9}x^2\right)=8x^3-\frac{1}{27}y^3\)

c) \(\left(3x-5y\right)\left(9x^2+15xy+\frac{1}{9}x^2\right)=27x^3-125y^3\)

16 tháng 8 2021

Trả lời:

a, \(\left(2x-5\right)^3=\left(2x\right)^3-3.\left(2x\right)^2.5+3.2x.5^2-5^3=8x^3-60x^2+150x-125\)

b, \(\left(2x+3\right)\left(4x^2-6x+9\right)=\left(2x+3\right)\left[\left(2x\right)^2-2x.3+3^2\right]=\left(2x\right)^3+3^3=8x^3+9\)

c, \(\left(\frac{1}{2}x+1\right)^3=\left(\frac{1}{2}x\right)^3+3\left(\frac{1}{2}x\right)^21+3\cdot\frac{1}{2}x.1^2+1^3=\frac{1}{8}x^3+\frac{3}{4}x^2+\frac{3}{2}x+1\)

d, \(\left(x-\frac{2}{3}y\right)\left(x^2+\frac{2}{3}xy+\frac{4}{9}y^2\right)=x^3-\left(\frac{2}{3}y\right)^3=x^3-\frac{8}{27}y^3\)

các bạn giúp mk vs ạ

10 tháng 7 2015

b)(y-2)^3=y^3-8+12y-6y^2

c)8x^3+y^3=(2x+y)(4x^2+y^2-4xy)

2)

=(xy+2/3)^2

30 tháng 9 2020

\(a,x^2-x+\frac{1}{4}=\left(x-\frac{1}{2}\right)^2 \)

b,\(a^2-\frac{4}{3}ba+\frac{4}{9}b^2\)=\(\left(a-\frac{2}{3}b\right)^2\)

c,\(a^2+10ab+25b^2\)=\(\left(a+5b\right)^2\)

d,\(x^2-6xy^2+9y^4\) =(\(x-3y^2\))\(^2\)

e,\(a^2+a+\frac{1}{4}\)=\(\left(a+\frac{1}{2}\right)^2\)

Cho mik điểm SP đi ak <3

27 tháng 6 2018

Mk xin lỗi nha, câu c sai đề

c) (x+6)4 + (x+8)4 = 272

16 tháng 4 2017

mình sẽ giải câu 3 cho bạn nhé

đề bài=> \(\frac{1}{x^2+4x+5x+20}+\frac{1}{x^2+5x+6x+30}+\frac{1}{x^2+6x+7x+42}=\frac{1}{18}\)

\(\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)

\(\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-...-\frac{1}{x+7}=\frac{1}{18}\)

\(\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)

\(18\left(x+7\right)-18\left(x+4\right)=\left(x+7\right)\left(x+4\right)\)

\(\left(x+13\right)\left(x-2\right)=0\)

\(\orbr{\begin{cases}x=-13\\x=2\end{cases}}\)

nhớ thank mk nhé

16 tháng 4 2017

câu 5 nà

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

<=>\(1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\ge9\)

<=>\(3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\ge9\)

<=>\(3+2+2+2\ge9\)(bất đẳng thức luôn đúng)

=> điều phải chứng minh

23 tháng 4 2021

Bài 1 : 

a, \(\left(a-2\right)^2-b^2=\left(a-2-b\right)\left(a-2+b\right)\)

b, \(2a^3-54b^3=2\left(a^3-27b^3\right)=2\left(a-3b\right)\left(a^2+3ab+9b\right)\)

23 tháng 4 2021

Bài 2 : tự kết luận nhé, ngại mà lười :( 

a, \(\frac{4x+3}{5}-\frac{6x-2}{7}=\frac{5x+4}{3}+3\)

\(\Leftrightarrow\frac{4x-3}{5}-\frac{5x-4}{3}=\frac{6x-2}{7}+3\)

\(\Leftrightarrow\frac{12x-9-25x+20}{15}=\frac{6x-2+21}{7}\)

\(\Leftrightarrow\frac{-13x-29}{15}=\frac{6x+19}{7}\Rightarrow-91x-203=90x+285\)

\(\Leftrightarrow181x=-488\Leftrightarrow x=-\frac{488}{181}\)

b, \(\frac{x+2}{3}+\frac{3\left(2x-1\right)}{4}-\frac{5x-3}{6}=x+\frac{5}{12}\)

\(\Leftrightarrow\frac{4x+8+9\left(2x-1\right)}{12}-\frac{10x-6}{12}=\frac{12x+5}{12}\)

\(\Rightarrow4x+8+18x-9-10x+6=12x+5\)

\(\Leftrightarrow12x+5=12x+5\Leftrightarrow0x=0\)

Vậy phương trình có vô số nghiệm 

c, \(\left|2x-3\right|=4\)

Với \(x\ge\frac{3}{2}\)pt có dạng : \(2x-3=4\Leftrightarrow x=\frac{7}{2}\)

Với \(x< \frac{3}{2}\)pt có dạng : \(2x-3=-4\Leftrightarrow x=-\frac{1}{2}\)

d, \(\left|3x-1\right|-x=2\Leftrightarrow\left|3x-1\right|=x+2\)

Với \(x\ge\frac{1}{3}\)pt có dạng : \(3x-1=x+2\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}\)

Với \(x< \frac{1}{3}\)pt có dạng : \(3x-1=-x-2\Leftrightarrow4x=-1\Leftrightarrow x=-\frac{1}{4}\)