Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 6xy^3+x^2y^6+9
= (xy^3 + 3)^2
b) x^4-2x^2y+y^2
= (x^2 - y)^2
c) x^6+25-10x^3
= (x^3 - 5)^2
a/ 6xy3+x2y6+9
= (xy3+3)2 bình phương của 1 tổng;cttq: (A+B)2
b/ x4-2x2y+y2
= (x2-y)2 bình phương của 1 hiệu; cttq (A-B)2
c/ x6+25-10x3
=(x3-5)2
Viết biểu thức sau dưới dạng bình phương của một tổng hoặc một hiệu :
xy2 + \(\frac{1}{4}x^2y^4\)+ 1
1a/ z2 - 6z + 5 - t2 - 4t = z2 - 2 . 3z + 32 - 4 - t2 - 4t = (z2 - 2 . 3z + 32) - (22 + 2 . 2t + t2) = (z - 3)2 - (2 + t)2
b/ x2 - 2xy + 2y2 + 2y2 + 1 = x2 - 2xy + y2 + y2 + 2y + 1 = (x2 - 2xy + y2) + (y2 + 2y + 1) = (x - y)2 + (y + 1)2
c/ 4x2 - 12x - y2 + 2y + 8 = (2x)2 - 12x - y2 + 2y + 32 - 1 = [ (2x)2 - 2 . 3 . 2x + 32 ] - (y2 - 2y + 1) = (2x - 3)2 - (y - 1)2
2a/ (x + y + 4)(x + y - 4) = x2 + xy - 4x + xy + y2 - 4y + 4x + 4y + 16 = x2 + (xy + xy) + (-4x + 4x) + (-4y + 4y) + y2 + 16
= x2 + 2xy + y2 + 42 = (x + y)2 + 42
b/ (x - y + 6)(x + y - 6) = x2 + xy - 6x - xy - y2 + 6y + 6x + 6y - 36 = x2 + (xy - xy) + (-6x + 6x) + (6y + 6y) - y2 - 36
= x2 - y2 + 12y - 62 = x2 - (y2 - 12y + 62) = x2 - (y2 - 2 . 6y + 62) = x2 - (y - 6)2
c/ (y + 2z - 3)(y - 2z - 3) = y2 -2yz - 3y + 2yz - 4z2 - 6z - 3y + 6z + 9 = y2 + (-2yz + 2yz) + (-3y - 3y) + (-6z + 6z) - 4z2 + 9
= y2 - 6y - 4z2 + 9 = (y2 - 6y + 9) - 4z2 = (y - 3)2 - (2z)2
d/ (x + 2y + 3z)(2y + 3z - x) = 2xy + 3xz - x2 + 4y2 + 6yz - 2xy + 6yz + 9z2 - 3xz = (2xy - 2xy) + (3xz - 3xz) - x2 + (6yz + 6yz) + 9z2 + 4y2
= -x2 + 4y2 + 12yz + 9z2 = (4y2 + 12yz + 9z2) - x2 = [ (2y)2 + 2 . 2 . 3yz + (3z)2 ] - x2 = (2y + 3z)2 - x2
Bài làm:
Ta có: \(\frac{x^3}{8}+\frac{3}{4}x^2y^2+\frac{3}{2}xy^4+y^6\)
\(=\left(\frac{x}{2}\right)^3+3.\left(\frac{x}{2}\right)^2.y^2+3.\frac{x}{2}.\left(y^2\right)^2+\left(y^2\right)^3\)
\(=\left(\frac{x}{2}+y^2\right)^3\)
`B=(x/2+y)^3-6(x/2+y)^2z + 6(x+2y)z^2-8z^3`
`=(x/2+y)^3 - 3. (x/2+y)^2 . 2z + 3. (x/2+y) . (2z)^2 - (2z)^3`
`=(x/2+y-2z)^3`
Sửa đề: Δ\(B=\left(\dfrac{x}{2}+y\right)^3-6\left(\dfrac{x}{2}+y\right)^2z+12\left(x+2y\right)\cdot z^2-8z^3\)
Ta có: \(B=\left(\dfrac{x}{2}+y\right)^3-6\left(\dfrac{x}{2}+y\right)^2z+12\left(x+2y\right)\cdot z^2-8z^3\)
\(=\left(\dfrac{1}{2}x+y\right)^2-3\cdot\left(\dfrac{1}{2}x+y\right)^2\cdot2z+3\cdot\left(\dfrac{1}{2}x+y\right)\cdot\left(2z\right)^2-\left(2z\right)^3\)
\(=\left(\dfrac{1}{2}x+y-2z\right)^3\)
Học tốt <3
x(3x-1)+(9x-5)(x-2)=3x2-x+9x(x-2)-5(x-2)=3x2-x+9x2-18x-5x+10=12x2-22x+10
a)4x2+12xy+9y2= (2x)2+2.2x.3y+(3y)2=(2x+3y)2
b)y2+1-2y= y2-2.y.1+12=(y-1)2
\(x^2-x+\frac{1}{4}\)
\(=x^2-2\cdot\frac{1}{2}\cdot x+\left(\frac{1}{2}\right)^2\)
\(=\left(x-\frac{1}{2}\right)^2\)
\(2xy^2+x^2y^4+1\)
\(=\left(xy^2\right)^2+2.xy^2+1^2\)
\(=\left(xy^2+1\right)^2\)
\(\left(x-2y\right)^2-4\left(x-2y\right)+4=\left(x-2y\right)^2-2.\left(x-2y\right).2+2^2=\left(x-2y-2\right)^2\)