Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{7+4\sqrt{3}}=\sqrt{\left(2+\sqrt{3}\right)^2}=2+\sqrt{3}\)
\(\sqrt{8-2\sqrt{12}}=\sqrt{\left(\sqrt{6}-\sqrt{2}\right)^2}=\left|\sqrt{6}-\sqrt{2}\right|=\sqrt{6}-\sqrt{2}\)
\(\sqrt{21+6\sqrt{6}}=\sqrt{\left(3\sqrt{2}-\sqrt{3}\right)^2}=\left|3\sqrt{2}-\sqrt{3}\right|=3\sqrt{2}-\sqrt{3}\)
\(\sqrt{15-6\sqrt{6}}=\sqrt{\left(3-\sqrt{6}\right)^2}=\left|3-\sqrt{6}\right|=3-\sqrt{6}\)
\(\sqrt{29-12\sqrt{5}}=\sqrt{\left(2\sqrt{5}-3\right)^2}=\left|2\sqrt{5}-3\right|=2\sqrt{5}-3\)
\(\sqrt{41+12\sqrt{5}}=\sqrt{\left(6+\sqrt{5}\right)^2}=6+\sqrt{5}\)
Bài 3:
a) Ta có: \(4+2\sqrt{3}\)
\(=3+2\cdot\sqrt{3}\cdot1+1\)
\(=\left(\sqrt{3}+1\right)^2\)
b) Ta có: \(7+4\sqrt{3}\)
\(=4+2\cdot2\cdot\sqrt{3}+3\)
\(=\left(2+\sqrt{3}\right)^2\)
c) Ta có: \(9+4\sqrt{5}\)
\(=5+2\cdot\sqrt{5}\cdot2+4\)
\(=\left(\sqrt{5}+2\right)^2\)
d) Ta có: \(31+10\sqrt{6}\)
\(=25+2\cdot5\cdot\sqrt{6}+6\)
\(=\left(5+\sqrt{6}\right)^2\)
e) Ta có: \(13+4\sqrt{3}\)
\(=12+2\cdot2\sqrt{3}\cdot1+1\)
\(=\left(2\sqrt{3}+1\right)^2\)
g) Ta có: \(21+12\sqrt{3}\)
\(=12+2\cdot2\sqrt{3}\cdot3+9\)
\(=\left(2\sqrt{3}+3\right)^2\)
h) Ta có: \(29+12\sqrt{5}\)
\(=20+2\cdot2\sqrt{5}\cdot3+3\)
\(=\left(2\sqrt{5}+3\right)^2\)
i) Ta có: \(49+8\sqrt{3}\)
\(=48+2\cdot4\sqrt{3}\cdot1\)
\(=\left(4\sqrt{3}+1\right)^2\)
k) Sửa đề: \(14-6\sqrt{5}\)
Ta có: \(14-6\sqrt{5}\)
\(=9-2\cdot3\cdot\sqrt{5}+5\)
\(=\left(3-\sqrt{5}\right)^2\)
l) Ta có: \(23-8\sqrt{7}\)
\(=16-2\cdot4\cdot\sqrt{7}+7\)
\(=\left(4-\sqrt{7}\right)^2\)
m) Ta có: \(15-4\sqrt{11}\)
\(=11-2\cdot\sqrt{11}\cdot2+4\)
\(=\left(\sqrt{11}-2\right)^2\)
n) Sửa đề: \(28-10\sqrt{3}\)
Ta có: \(28-10\sqrt{3}\)
\(=25-2\cdot5\cdot\sqrt{3}+3\)
\(=\left(5-\sqrt{3}\right)^2\)
o) Ta có: \(17-12\sqrt{2}\)
\(=9-2\cdot3\cdot2\sqrt{2}+8\)
\(=\left(3-2\sqrt{2}\right)^2\)
p) Ta có: \(43-30\sqrt{2}\)
\(=25-2\cdot5\cdot3\sqrt{2}+18\)
\(=\left(5-3\sqrt{2}\right)^2\)
q) Ta có: \(51-10\sqrt{2}\)
\(=50-2\cdot5\sqrt{2}\cdot1\)
\(=\left(5\sqrt{2}-1\right)^2\)
r) Ta có: \(49-12\sqrt{5}\)
\(=45-2\cdot3\sqrt{5}\cdot2+4\)
\(=\left(3\sqrt{5}-2\right)^2\)
\(A=\left(2-\sqrt{3}\right)\sqrt{4+2.2.\sqrt{3}+3}=\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)=1\)
các câu còn lại làm tương tự nhé bạn !
a)
\(A=\sqrt{26+15\sqrt{3}}=\sqrt{\frac{52+30\sqrt{3}}{2}}=\sqrt{\frac{27+25+2\sqrt{27.25}}{2}}\)
\(=\sqrt{\frac{(\sqrt{27}+\sqrt{25})^2}{2}}=\frac{\sqrt{27}+\sqrt{25}}{\sqrt{2}}=\frac{3\sqrt{3}+5}{\sqrt{2}}=\frac{3\sqrt{6}+5\sqrt{2}}{2}\)
b)
\(B\sqrt{2}=\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}-2\)
\(=\sqrt{7+1+2\sqrt{7}}-\sqrt{7+1-2\sqrt{7}}-2\)
\(=\sqrt{(\sqrt{7}+1)^2}-\sqrt{(\sqrt{7}-1)^2}-2=\sqrt{7}+1-(\sqrt{7}-1)-2=0\)
\(\Rightarrow B=0\)
c)
\(C=\sqrt{8-2\sqrt{15}}-\sqrt{8+2\sqrt{15}}=\sqrt{3+5-2\sqrt{3.5}}-\sqrt{3+5+2\sqrt{3.5}}\)
\(=\sqrt{(\sqrt{5}-\sqrt{3})^2}-\sqrt{(\sqrt{5}+\sqrt{3})^2}=(\sqrt{5}-\sqrt{3})-(\sqrt{5}+\sqrt{3})=-2\sqrt{3}\)
d)
\(D=(\sqrt{6}-2)(5+2\sqrt{6})\sqrt{5-2\sqrt{6}}\)
\(=\sqrt{2}(\sqrt{3}-\sqrt{2})(2+3+2\sqrt{2.3})\sqrt{2+3-2\sqrt{2.3}}\)
\(=\sqrt{2}(\sqrt{3}-\sqrt{2})(\sqrt{3}+\sqrt{2})^2\sqrt{(\sqrt{3}-\sqrt{2})^2}\)
\(=\sqrt{2}(\sqrt{3}-\sqrt{2})^2(\sqrt{3}+\sqrt{2})^2=\sqrt{2}[(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})]^2\)
\(=\sqrt{2}.1^2=\sqrt{2}\)
e)
\(E=(\sqrt{10}-\sqrt{2})\sqrt{3+\sqrt{5}}=(\sqrt{5}-1).\sqrt{2}.\sqrt{3+\sqrt{5}}\)
\(=(\sqrt{5}-1)\sqrt{6+2\sqrt{5}}=(\sqrt{5}-1)\sqrt{5+1+2\sqrt{5.1}}\)
\(=(\sqrt{5}-1)\sqrt{(\sqrt{5}+1)^2}=(\sqrt{5}-1)(\sqrt{5}+1)=4\)
f)
\(F=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{20+9-2\sqrt{20.9}}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{(\sqrt{20}-3)^2}}}=\sqrt{\sqrt{5}-\sqrt{3-(\sqrt{20}-3)}}\)
\(=\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}=\sqrt{\sqrt{5}-\sqrt{5+1-2\sqrt{5}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{(\sqrt{5}-1)^2}}=\sqrt{\sqrt{5}-(\sqrt{5}-1)}=\sqrt{1}=1\)
a: Sửa đề: \(A=\sqrt{\left(4-\sqrt{15}\right)^2}+\sqrt{15}\)
\(=4-\sqrt{15}+\sqrt{15}=4\)
b: \(A=2-\sqrt{3}+\sqrt{3}-1=1\)
c: \(C=3\sqrt{5}-2-3\sqrt{5}-2=-4\)
d: Sửa đề: \(D=\sqrt{29+12\sqrt{5}}-\sqrt{29-12\sqrt{5}}\)
\(=2\sqrt{5}+3-2\sqrt{5}+3\)
=6
a) \(A=\sqrt{\left(4-\sqrt{15}\right)^2}+\sqrt{15}\)
\(A=\left|4-\sqrt{15}\right|+\sqrt{15}\)
\(A=4-\sqrt{15}+\sqrt{15}\)
\(A=4\)
b) \(B=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(1-\sqrt{3}\right)}\)
\(B=\left|2-\sqrt{3}\right|+\left|1-\sqrt{3}\right|\)
\(B=2-\sqrt{3}-1+\sqrt{3}\)
\(B=1\)
c) \(C=\sqrt{49-12\sqrt{5}}-\sqrt{49+12\sqrt{5}}\)
\(C=\sqrt{\left(3\sqrt{5}\right)^2-2\cdot3\sqrt{15}\cdot2+2^2}-\sqrt{\left(3\sqrt{5}\right)^2+2\cdot3\sqrt{5}\cdot2+2^2}\)
\(C=\sqrt{\left(3\sqrt{5}-2\right)^2}-\sqrt{\left(3\sqrt{5}+2\right)^2}\)
\(C=\left|3\sqrt{5}-2\right|-\left|3\sqrt{5}+2\right|\)
\(C=3\sqrt{5}-2-3\sqrt{5}-2\)
\(C=-4\)
d) \(D=\sqrt{29+12\sqrt{5}}-\sqrt{29-12\sqrt{5}}\)
\(D=\sqrt{\left(2\sqrt{5}\right)^2+2\cdot2\sqrt{5}\cdot3+3^2}-\sqrt{\left(2\sqrt{5}\right)^2-2\cdot2\sqrt{5}\cdot3+3^3}\)
\(D=\sqrt{\left(2\sqrt{5}+3\right)^2}-\sqrt{\left(2\sqrt{5}-3\right)^2}\)
\(D=\left|2\sqrt{5}+3\right|-\left|2\sqrt{5}-3\right|\)
\(D=2\sqrt{5}+3-2\sqrt{5}+3\)
\(D=6\)
a: \(\sqrt{\left(4-\sqrt{15}\right)^2}+\sqrt{15}\)
\(=4-\sqrt{15}+\sqrt{15}=4\)
b: \(\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}\)
\(=2+\sqrt{3}-2+\sqrt{3}\)
\(=2\sqrt{3}\)
c: \(\sqrt{29+12\sqrt{5}}-\sqrt{29-12\sqrt{5}}\)
\(=\sqrt{\left(2\sqrt{5}+3\right)^2}-\sqrt{\left(2\sqrt{5}-3\right)^2}\)
\(=2\sqrt{5}+3-2\sqrt{5}+3=6\)
Bài 1:
a)
\(\sqrt{13-2\sqrt{42}}=\sqrt{6+7-2\sqrt{6.7}}=\sqrt{(\sqrt{7}-\sqrt{6})^2}=|\sqrt{7}-\sqrt{6}|=\sqrt{7}-\sqrt{6}\)
b)
\(\sqrt{46+6\sqrt{5}}=\sqrt{46+2\sqrt{45}}=\sqrt{45+1+2\sqrt{45.1}}=\sqrt{(\sqrt{45}+1)^2}=\sqrt{45}+1\)
\(=3\sqrt{5}+1\)
c)
\(\sqrt{12-3\sqrt{15}}=\sqrt{\frac{24-6\sqrt{15}}{2}}=\sqrt{\frac{24-2\sqrt{135}}{2}}=\sqrt{\frac{15+9-2\sqrt{15.9}}{2}}\)
\(=\sqrt{\frac{(\sqrt{15}-\sqrt{9})^2}{2}}=\frac{\sqrt{15}-\sqrt{9}}{\sqrt{2}}=\frac{\sqrt{15}-3}{\sqrt{2}}\)
d)
\(\sqrt{11+\sqrt{96}}=\sqrt{11+2\sqrt{24}}=\sqrt{8+3+2\sqrt{8.3}}\)
\(=\sqrt{(\sqrt{8}+\sqrt{3})^2}=\sqrt{8}+\sqrt{3}\)
Bài 1:
a)
\(\sqrt{13-2\sqrt{42}}=\sqrt{6+7-2\sqrt{6.7}}=\sqrt{(\sqrt{7}-\sqrt{6})^2}=|\sqrt{7}-\sqrt{6}|=\sqrt{7}-\sqrt{6}\)
b)
\(\sqrt{46+6\sqrt{5}}=\sqrt{46+2\sqrt{45}}=\sqrt{45+1+2\sqrt{45.1}}=\sqrt{(\sqrt{45}+1)^2}=\sqrt{45}+1\)
\(=3\sqrt{5}+1\)
c)
\(\sqrt{12-3\sqrt{15}}=\sqrt{\frac{24-6\sqrt{15}}{2}}=\sqrt{\frac{24-2\sqrt{135}}{2}}=\sqrt{\frac{15+9-2\sqrt{15.9}}{2}}\)
\(=\sqrt{\frac{(\sqrt{15}-\sqrt{9})^2}{2}}=\frac{\sqrt{15}-\sqrt{9}}{\sqrt{2}}=\frac{\sqrt{15}-3}{\sqrt{2}}\)
d)
\(\sqrt{11+\sqrt{96}}=\sqrt{11+2\sqrt{24}}=\sqrt{8+3+2\sqrt{8.3}}\)
\(=\sqrt{(\sqrt{8}+\sqrt{3})^2}=\sqrt{8}+\sqrt{3}\)
a) \(21-8\sqrt{5}=16-2\times4\times\sqrt{5}+5=\left(4-\sqrt{5}\right)^2\)
b) \(47-12\sqrt{11}=36-2\times6\times\sqrt{11}+11=\left(6-\sqrt{11}\right)^2\)
c) \(13-4\sqrt{3}=12-2\times1\times\sqrt{3}+1=\left(2\sqrt{3}-1\right)^2\)
d) \(43+30\sqrt{2}=25+2\times5\times3\sqrt{2}+18=\left(5+3\sqrt{2}\right)^2\)
e) \(41+24\sqrt{2}=9+2\times3\times4\sqrt{2}+32=\left(3+4\sqrt{2}\right)^2\)
g) \(29-12\sqrt{5}=9+2\times3\times2\sqrt{5}+20=\left(3+2\sqrt{5}\right)^2\)
h) \(49-8\sqrt{3}=48-2\times4\sqrt{3}\times1+1=\left(4\sqrt{3}-1\right)^2\)
i) \(37-12\sqrt{7}=28-2\times3\times2\sqrt{7}+9=\left(2\sqrt{7}-3\right)^2\)