Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1:
2n^2+5n-1 chia hết cho 2n-1
=>2n^2-n+6n-3+2 chia hết cho 2n-1
=>2n-1 thuộc {1;-1;2;-2}
mà n nguyên
nên n=1 hoặc n=0
2:
a: A=n(n+1)(n+2)
Vì n;n+1;n+2 là 3 số liên tiếp
nên A=n(n+1)(n+2) chia hết cho 3!=6
b: B=(2n-1)[(2n-1)^2-1]
=(2n-1)(2n-2)*2n
=4n(n-1)(2n-1)
Vì n;n-1 là hai số nguyên liên tiếp
nên n(n-1) chia hết cho 2
=>B chia hết cho 8
c: C=n^2+14n+49-n^2+10n-25=24n+24=24(n+1) chia hết cho 24
\(a,=\left(x+\dfrac{5}{2}\right)^2\\ b,=\left(2x+3y\right)^2\\ c,=a^2+b^2+c^2+2ab-2bc-2ac\\ d,=\left(4x-1\right)^2\\ e,=a^2+b^2+c^2+2ab+2bc+2ac\\ f,=a^2+b^2+c^2-2ab+2bc-2ac\)
\(n\left(5n-1\right)-5n\left(n+2\right)=5n^2-n-5n^2-10n=-11n⋮11\forall n\in Z\)
\(a,Sửa:16-9x^2+y^2-8y\\ =\left(y-4\right)^2-9x^2\\ =\left(y-3x-4\right)\left(y+3x-4\right)\\ b,=\left(n^2+4n\right)^2+10\left(n^2+4n\right)+25\\ =\left(n^2+4n+5\right)^2\)
\(25a^2-20ab+4b^2\)
= \(\left(5a\right)^2\) \(-2.5a.2b\) \(+\left(2b\right)^2\)
= \(\left(5a-2b\right)^2\)
\(=\left(5a\right)^2-2\cdot5\cdot2\cdot a\cdot b+\left(2b\right)^2=\left(5a-2b\right)^2\)
A=9x^2−6x+1
=(3x)^2−2.3x.1+1^2
=(3x−1)^2
B=(2x+3y)^2+(2x+3y)+1(2x+3y)2+(2x+3y)+1
=[(2x+3y)^2+2.(2x+3y).1/2+(1/2)^2]+3/4
=(2x+3y+1/2)^2+3/4
=(2x+3y+1)(2x+3y)+1
\(=\left(2n^2+5n\right)\left(2n^2+5n\right)+12\left(2n^2+5n\right)+36=\left(2n^2+5n\right)^2+2.\left(2n^2+5n\right).6+6^2=\left(2n^2+5n+6\right)^2\)