![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
bn dựa vào hằng đẳng thức a2+2ab+b2 = (a+b)2
vậy x2 +x +1/4 = x2 + 2.x.1/2 + (1/2)2 = (x+ 1/2)2
bn hiu rang 1 ta có the viet la 1= 2/2 = 1.1/2
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(x^2+2x+1\)
\(=\left(x+1\right)^2\)
b) \(9-24x+16x^2\)
\(=\left(3-4x\right)^2\)
c) \(4x^2+\dfrac{1}{4}+2x\)
\(=4x^2+2x+\dfrac{1}{4}\)
\(=\left(2x+\dfrac{1}{2}\right)^2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(x-2\right)\left(x-3\right)\left(x-4\right)\left(x-5\right)+1\)(2)
\(=\left(x-2\right)\left(x-5\right)\left(x-3\right)\left(x-4\right)+1\)
\(=\left(x^2-7x+10\right)\left(x^2-7x+12\right)+1\)(1)
Đặt \(x^2-7x+10=t\)
\(\Rightarrow\left(1\right)=t\left(t+2\right)+1=t^2+2t+1=\left(t+1\right)^2\)
Mà \(x^2-7x+10=t\)nên \(\left(2\right)=\left(x^2-7x+11\right)^2\)
Vậy \(\left(x-2\right)\left(x-3\right)\left(x-4\right)\left(x-5\right)+1\)\(=\left(x^2-7x+11\right)^2\)
\(\left(x+1\right)^3-x\left(x-3\right)\left(x+3\right)-6\left(x-1\right)\left(x+2\right)=13\)
\(\Leftrightarrow x^3+3x^2+3x+1-x\left(x^2-9\right)-6\left(x^2+x-2\right)=13\)
\(\Leftrightarrow x^3+3x^2+3x+1-x^3+9x-6x^2-6x+12=13\)
\(\Leftrightarrow-3x^2+6x=0\)
\(\Leftrightarrow-3\left(x^2-2\right)=0\)
\(\Leftrightarrow x^2-2=0\Leftrightarrow x^2=2\)
\(\Leftrightarrow x=\pm\sqrt{2}\)
x^2 + ( 2x + 1 )^2 + 3 ( x + 2 )^2 + 4 ( x+3)^2
Viết được thành tổng các bình phương của 2 biểu thức
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^2-x+\frac{1}{4}\)
\(=x^2-2\cdot\frac{1}{2}\cdot x+\left(\frac{1}{2}\right)^2\)
\(=\left(x-\frac{1}{2}\right)^2\)
a) \(x^2+x+\frac{1}{4}=x^2+2x\frac{1}{2}+\left(\frac{1}{2}\right)^2=\left(x+\frac{1}{2}\right)^2\)
=(x+1/2)2