K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3

Bài 2

a) Biểu thức đại số biểu thị tích của tổng của hai số x, y và hiệu bình phương hai số đó:

(x + y)(x - y)²

b) Tổng các bình phương của hai số a và b:
a² + b²

c) Tổng của tích của hai số x và y với 5 lần bình phương của tổng hai số đó:

xy + 5(x + y)²

d) Số nhỏ hơn 3 lần số a cho trước 2 đơn vị:
3a - 2
e) Tích của tổng hai số với hiệu giữa tổng bình phương của hai số đó với tích của chúng:
(a + b).[(a + b)² - ab]

Bài 2:

Qua B, kẻ tia BD nằm giữa hai tia BA và BC sao cho BD//Ax//Cz

ta có: BD//Ax

=>\(\hat{xAB}+\hat{ABD}=180^0\) (hai góc trong cùng phía)

=>\(\hat{ABD}=180^0-125^0=55^0\)

Ta có: BD//Cz

=>\(\hat{DBC}+\hat{BCz}=180^0\) (hai góc trong cùng phía)

=>\(\hat{DBC}=180^0-130^0=50^0\)

Ta có: tia BD nằm giữa hai tia BA và BC

=>\(\hat{ABC}=\hat{DBA}+\hat{DBC}\)

=>\(\hat{ABC}=55^0+50^0=105^0\)

Bài 3:

Ax//yy'

=>\(\hat{xAB}=\hat{yBA}\) (hai góc so le trong)

=>\(\hat{yBA}=50^0\)

Cz//yy'

=>\(\hat{yBC}=\hat{zCB}\) (hai góc so le trong)

=>\(\hat{yBC}=40^0\)

Ta có: tia By nằm giữa hai tia BA và BC

=>\(\hat{ABC}=\hat{yBA}+\hat{yBC}=40^0+50^0=90^0\)

Bài 4:

Qua B, kẻ tia BD nằm giữa hai tia BA và BC sao cho BD//Ax//Cz

BD//Ax

=>\(\hat{xAB}+\hat{ABD}=180^0\) (hai góc trong cùng phía)

=>\(\hat{ABD}=180^0-110^0=70^0\)

ta có; tia BD nằm giữa hai tia BA và BC

=>\(\hat{DBA}+\hat{DBC}=\hat{ABC}\)

=>\(\hat{DBC}=100^0-70^0=30^0\)

Ta có: \(\hat{DBC}=\hat{zCB}\left(=30^0\right)\)

mà hai góc này là hai góc ở vị trí so le trong

nên BD//Cz

Ta có: BD//Ax

BD//Cz

Do đó: Ax//Cz



a: a//b

=>\(\hat{A_1}=\hat{B_3}\) (hai góc so le trong)

\(\hat{A_1}=65^0\)

nên \(\hat{B_3}=65^0\)

b: Ta có: \(\hat{B}_3+\hat{B_2}=180^0\) (hai góc kề bù)

=>\(\hat{B_2}=180^0-65^0=115^0\)

11 tháng 8

Giải:

a; \(\hat{A_1}\) = \(65^0\) (gt)

\(\hat{A_1}\) = \(\hat{A_3}\) = 65\(^0\)(đối đỉnh)

\(\hat{A_3}\) = \(\hat{B_3}\) = \(65^0\) (slt)

b; \(\hat{B_2}\) + \(\hat{B_3}\) = 180\(^0\) (hai góc kề bù)

\(\hat{B_2}\) = 180\(^0\) - \(\hat{B_3}\)

\(\hat{B_2}\) = 180\(^0\) - 65\(^0\) = 115\(^0\)

Vậy a; \(\hat{B}_3\) = 65\(^0\)

b; \(\hat{B_2}\) = 115\(^0\)







Bài 1:

1: xx'⊥AD

yy'⊥AD

Do đó: xx'//yy'

2:

Cách 1:

xx'//yy'

=>\(\hat{C_1}=\hat{x^{\prime}BC}\) (hai góc so le trong)

=>\(\hat{C_1}=70^0\)

Cách 2:

ta có: \(\hat{x^{\prime}BC}+\hat{xBC}=180^0\) (hai góc kề bù)

=>\(\hat{xBC}=180^0-70^0=110^0\)

Ta có: xx'//yy'

=>\(\hat{xBC}+\hat{C_1}=180^0\) (hai góc trong cùng phía)

=>\(\hat{C_1}=180^0-110^0=70^0\)

Bài 2:

a: \(\hat{ABC}=\hat{n^{\prime}CB}\left(=80^0\right)\)

mà hai góc này là hai góc ở vị trí so le trong

nên mm'//nn'

b: Cách 1:

ta có: \(\hat{xAm}+\hat{mAD}=180^0\) (hai góc kề bù)

=>\(\hat{mAD}=180^0-70^0=110^0\)

Ta có: AB//CD
=>\(\hat{mAD}=\hat{D_1}\) (hai góc so le trong)

=>\(\hat{D_1}=110^0\)

Cách 2:

Ta có: \(\hat{xAm}=\hat{BAD}\) (hai góc đối đỉnh)

\(\hat{xAm}=70^0\)

nên \(\hat{BAD}=70^0\)

Ta có: AB//CD

=>\(\hat{BAD}+\hat{D_1}=180^0\) (hai góc trong cùng phía)

=>\(\hat{D_1}=180^0-70^0=110^0\)

Ta có: tia CD nằm giữa hai tia CF và CB

=>\(\hat{BCF}=\hat{BCD}+\hat{FCD}=20^0+50^0=70^0\)

Ta có: \(\hat{BCF}=\hat{ABC}\left(=70^0\right)\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//CF
Ta có: \(\hat{EDC}+\hat{DCF}=130^0+50^0=180^0\)

mà hai góc này là hai góc ở vị trí trong cùng phía

nên ED//CF

Ta có: AB//CF

ED//CF

Do đó: AB//DE

20 tháng 8

cảm ơn !

19 tháng 8

Giải:

a; m ⊥ d; n ⊥ d

⇒ m//n (hai đường thẳng cùng vuông góc với đường thẳng thứ ba thì song song với nhau)

b; Điểm B trên hình đâu em?



19 tháng 8

Giải:

a; \(\hat{x^{\prime}AB}\) = \(\hat{ABy}\) = 70\(^0\)(gt) (1)

\(\hat{x^{\prime}AB}\)\(\hat{ABy}\) (hai góc so le trong) (2)

Kết hợp (1) và (2) ta có:

\(xx^{\prime}\) // yy'

b; \(xx^{\prime}\) // yy' (cmt) (a)

mm' ⊥ \(x\)\(x^{\prime}\)(gt) (b)

Từ (a) và (b) ta có:

mm'⊥ yy' (tính chất từ vuông góc đến song song)

\(\hat{yDm^{\prime}}\) = 90\(^0\)




Bài 8:

Chu vi đáy là:

3,5+3,5+3+6=7+9=16(cm)

Diện tích xung quanh là: \(16\cdot11,5=184\left(\operatorname{cm}^2\right)\)

Bài 9:

Diện tích đáy là:

\(S=\frac12\cdot7\cdot24=12\cdot7=84\left(m^2\right)\)

Thể tích của khối bê tông là:

\(84\cdot22=1848\left(m^3\right)\)

Số tiền phải trả là:

\(1848\cdot2500000=4620000000\) (đồng)

Bài 14:

\(A\left(x\right)+B\left(x\right)=5x^4-6x^3-3x^2-4\)

\(A\left(x\right)-B\left(x\right)=3x^4+7x^2+8x+2\)

Do đó: \(A\left(x\right)+B\left(x\right)+A\left(x\right)-B\left(x\right)=5x^4-6x^3-3x^2-4+3x^4+7x^2+8x+2\)

=>\(2\cdot A\left(x\right)=8x^4-6x^3+4x^2+8x-2\)

=>\(A\left(x\right)=4x^4-3x^3+2x^2+4x-1\)

Ta có: \(A\left(x\right)+B\left(x\right)=5x^4-6x^3-3x^2-4\)

=>\(B\left(x\right)=5x^4-6x^3-3x^2-4-4x^4+3x^3-2x^2-4x-1\)

=>\(B\left(x\right)=x^4-3x^3-5x^2-4x-5\)

Bài 13:

\(f\left(x\right)+g\left(x\right)=6x^4-3x^2-5\)

\(f\left(x\right)-g\left(x\right)=4x^4-6x^3+7x^2+8x-9\)

Do đó: \(f\left(x\right)+g\left(x\right)+f\left(x\right)-g\left(x\right)=6x^4-3x^2-5+4x^4-6x^3+7x^2+8x-9\)

=>\(2\cdot f\left(x\right)=10x^4-6x^3+4x^2+8x-14\)

=>\(f\left(x\right)=5x^4-3x^3+2x^2+4x-7\)

\(f\left(x\right)+g\left(x\right)=6x^4-3x^2-5\)

=>\(g\left(x\right)=6x^4-3x^2-5-5x^4+3x^3-2x^2-4x+7=x^4+3x^3-5x^2-4x+2\)