Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ngoài ra chúng mình cũng cần tìm thêm nhà tài trợ phụ ngoài nhà tài trợ chính là hoc24.vn ^^ Ai có thể giới thiệu cho chúng mình nhỉ?
đề xuất với ad cho tổ chức cuộc thi thiết kế như cuộc thi thiết kế logo nhé =)))
tth giờ chuyển sang hình rồi à :))
Câu 2:
Kẻ đường cao AG, BE, CF của tam giác ABC.
Dễ thấy tứ giác HKMG, HECG nội tiếp.
Do đó AK . AM = AH . AG = AE . AC. Suy ra tứ giác KECM nội tiếp.
Tương tự tứ giác KFCM nội tiếp.
Do đó \(\widehat{BKC}=\widehat{BKM}+\widehat{CKM}=\widehat{BFM}+\widehat{CEM}=\widehat{ABC}+\widehat{ACB}=\widehat{BHC}\). Suy ra tứ giác BHKC nội tiếp.
Ta có \(\widehat{BLC}=\widehat{BKC}=\widehat{BHC}=180^o-\widehat{BAC}\) nên tứ giác ABLC nội tiếp.
b) Ta có tứ giác KECM nội tiếp nên \(\widehat{MKC}=\widehat{MEC}=\widehat{ACB}\). Do đó \(\Delta MKC\sim\Delta MCA\left(g.g\right)\).
Suy ra \(\widehat{KCM}=\widehat{KAC}\Rightarrow\widehat{LAB}=\widehat{LCB}=\widehat{KCB}=\widehat{KAC}\).
c) Ta có kq quen thuộc là \(\Delta LMB\sim\Delta LCA\).
Kẻ tiếp tuyến Lx của (ABC) sao cho Lx nằm cùng phía với B qua AL.
Ta có \(\widehat{ALx}=\widehat{ACL}=\widehat{LMX}\Rightarrow\) Ax là tiếp tuyến của (LXM).
Do đó (ABC) và (LXM) tiếp xúc với nhau.
Ta có AI . AX = AH . AG = AK . AM nên I, X, M, K đồng viên.
Ta có kq quen thuộc là (HBC) và (ABC) đối xứng với nhau qua BC.
Lại có (IKMX) và (LMX) đối xứng với nhau qua BC.
Suy ra (HC) và (IKMX) cũng tiếp xúc với nhau.
Câu 1 :
a Ta có \(\Lambda CHE\), \(\Lambda HDB\) là các góc chắn nửa đường tròn đường kính HC;HB \(\Rightarrow\Lambda CHE=\Lambda HDB=90^0\) Mà \(\Lambda CHE+\Lambda AEH=180^0\Rightarrow\Lambda HDB+\Lambda AEH=180^0\Rightarrow\) Tứ giác ADHE nội tiếp
b Từ câu a ta có: tứ giác ADHE nt \(\Rightarrow\Lambda IEH=\Lambda DEH=\Lambda DAH=\Lambda BAH\) Mà \(\Lambda BAH=\Lambda BHD=\Lambda IHD\)( cùng phụ với góc ABH)
\(\Rightarrow\Lambda IEH=\Lambda IHD\) Lại có \(\Lambda EIH=\Lambda HID\) \(\Rightarrow\Delta IEH\sim\Delta IHD\left(g.g\right)\Rightarrow\dfrac{IH}{ID}=\dfrac{IE}{IH}\Rightarrow IH^2=ID\cdot IE\)
c Gọi giao điểm của BM với AC là K; CN với AB là J
Từ câu a ta có tứ giác ADHE nt \(\Rightarrow\Lambda KAH=\Lambda EAH=\Lambda DEH=\dfrac{1}{2}sđMH\) Mà \(\Lambda MHA=\dfrac{1}{2}sđMH\Rightarrow\Lambda KAH=\Lambda MHA\) Lại có \(\Lambda ABK=\Lambda DMH\left(=\dfrac{1}{2}sđDM\right)\) ; \(\Lambda BAH=\Lambda BHD\) (từ câu b)
\(\Rightarrow\Lambda BAH+\Lambda KAH+\Lambda BAK=\Lambda MHA+\Lambda DMH+\Lambda BHD=\Lambda AHB=90^0\Rightarrow\Lambda BKA=90^0\) \(\Rightarrow\) BK vuông góc với CA tại K\(\Rightarrow BM\) vuông góc với AC tại K(1)
Chứng minh tương tự ta được: CN vuông góc với AB tại J(2)
Xét tam giác ABC có BK vuông góc với CA; CJ vuông góc với AB ; AH vuông góc với BC \(\Rightarrow\) BK;CJ;AH là 3 đường cao của tam giác ABC
\(\Rightarrow BK;CJ;AH\) đồng quy \(\Rightarrow BM;CN;AH\) đồng quy
Bài 129:
ĐKXĐ: \(x^2-y+1\ge0\)\(\left\{{}\begin{matrix}4x^2-2x+y^2+y-4xy=0\left(1\right)\\x^2-x+y=\left(y-x+3\right)\sqrt{x^2-y+1}\left(2\right)\end{matrix}\right.\)
Từ (1) \(\Rightarrow\left(2x-y\right)^2-\left(2x-y\right)=0\Leftrightarrow\left(2x-y\right)\left(2x-y-1\right)=0\Leftrightarrow\left[{}\begin{matrix}y=2x\\y=2x-1\end{matrix}\right.\)
Nếu y=2x Thay vào (2) ta được:
\(\Rightarrow x^2-x+2x=\left(2x-x+3\right)\sqrt{x^2-2x+1}\Leftrightarrow x^2+x=\left(x+3\right)\left|x-1\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+x=\left(x+3\right)\left(1-x\right)\left(x< 1\right)\left(3\right)\\x^2+x=\left(x+3\right)\left(x-1\right)\left(x\ge1\right)\left(4\right)\end{matrix}\right.\)
Từ (3) \(\Rightarrow x^2+x=x-x^2+3-3x\Leftrightarrow2x^2+3x-3=0\) \(\Leftrightarrow x^2-2\cdot\dfrac{3}{4}x+\dfrac{9}{16}-\dfrac{9}{16}-\dfrac{3}{2}=0\Leftrightarrow\left(x-\dfrac{3}{4}\right)^2=\dfrac{33}{16}\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3+\sqrt{33}}{4}\left(L\right)\\x=\dfrac{3-\sqrt{33}}{4}\left(TM\right)\end{matrix}\right.\)\(\Rightarrow y=\) \(2\cdot\left(\dfrac{3-\sqrt{33}}{4}\right)=\dfrac{3-\sqrt{33}}{2}\)
Từ (4) \(\Rightarrow x^2+x=x^2-x+3x-3\Leftrightarrow-x=-3\Leftrightarrow x=3\left(TM\right)\)\(\Rightarrow y=6\)
Nếu y=2x+1 Thay vào (2) ta được:
\(\Rightarrow x^2-x+2x+1=\left(2x+1-x+3\right)\sqrt{x^2-2x-1+1}\Leftrightarrow x^2+x+1=\left(x+4\right)\sqrt{x^2-2x}\left(\left[{}\begin{matrix}x\ge2\\x\le0\end{matrix}\right.;x\ge-4\right)\)
\(\Rightarrow x^2+x+1-\left(x+4\right)\sqrt{x^2-2x}=0\Leftrightarrow2x^2+2x+2-2x\sqrt{x^2-2x}-4\sqrt{x^2-2x}=0\Leftrightarrow x^2-2x+x^2+4-2x\sqrt{x^2-2x}+4x-4\sqrt{x^2-2x}=2\Leftrightarrow\left(-\sqrt{x^2-2x}+x+2\right)^2=2\) \(\Leftrightarrow\left[{}\begin{matrix}-\sqrt{x^2-2x}+x+2=\sqrt{2}\left(5\right)\\-\sqrt{x^2-2x}+x+2=-\sqrt{2}\left(6\right)\end{matrix}\right.\)
Từ (5) \(\Rightarrow\sqrt{x^2-2x}=x+2-\sqrt{2}\Rightarrow x^2-2x=x^2+\left(2-\sqrt{2}\right)^2-2x\left(2-\sqrt{2}\right)\Leftrightarrow2x\left(2-\sqrt{2}-2\right)=4+2-4\sqrt{2}\Leftrightarrow-2\sqrt{2}x=6-4\sqrt{2}\Leftrightarrow x=-\dfrac{3\sqrt{2}}{2}+2\left(TM\right)\) \(\Rightarrow y=2\left(\dfrac{-3\sqrt{2}}{2}+2\right)+1=-3\sqrt{2}+5\)
Từ (6) \(\Rightarrow\sqrt{x^2-2x}=x+2+\sqrt{2}\Rightarrow x^2-2x=x^2+\left(2+\sqrt{2}\right)^2+2x\left(2+\sqrt{2}\right)\Leftrightarrow2x\left(2+\sqrt{2}-2\right)=6+4\sqrt{2}\Leftrightarrow2\sqrt{2}x=6+4\sqrt{2}\Leftrightarrow x=\dfrac{3\sqrt{2}}{2}+2\left(TM\right)\)
\(\Rightarrow y=2\left(\dfrac{3\sqrt{2}}{2}+2\right)+1=3\sqrt{2}+5\)
Vậy...
Mik sorry mik làm nhầm
Nếu y=2x-1 Thay vào(2) ta được:
\(\Rightarrow x^2-x+2x-1=\left(2x-1+x+3\right)\sqrt{x^2-2x-1+1}\Leftrightarrow x^2+x-1=\left(x+2\right)\sqrt{x^2-2x}\left(\left[{}\begin{matrix}x\ge2\\x\le0\end{matrix}\right.\right)\) \(\Leftrightarrow2x^2+2x-2-2x\sqrt{x^2-2x}-4\sqrt{x^2-2x}=0\Leftrightarrow x^2-2x+x^2+4-2x\sqrt{x^2-2x}-4\sqrt{x^2-2x}+4x=6\Leftrightarrow\left(-\sqrt{x^2-2x}+x+2\right)^2=6\Leftrightarrow\left[{}\begin{matrix}-\sqrt{x^2-2x}+x+2=\sqrt{6}\left(5\right)\\-\sqrt{x^2-2x}+x+2=-\sqrt{6}\left(6\right)\end{matrix}\right.\) Từ (5) \(\Rightarrow\sqrt{x^2-2x}=x+2-\sqrt{6}\Rightarrow x^2-2x=x^2+2x\left(2-\sqrt{6}\right)+\left(2-\sqrt{6}\right)^2\Leftrightarrow2x\left(2-\sqrt{6}-2\right)=10-4\sqrt{6}\Leftrightarrow x=-\dfrac{5\sqrt{6}}{6}+2\left(TM\right)\) \(\Rightarrow y=2\left(\dfrac{-5\sqrt{6}}{6}+2\right)-1=-\dfrac{5\sqrt{6}}{3}+3\)
Từ (6) \(\Rightarrow\sqrt{x^2-2x}=x+2+\sqrt{6}\Rightarrow x^2+2x=x^2+2x\left(2+\sqrt{6}\right)+\left(2+\sqrt{6}\right)^2\Leftrightarrow2x\left(2+\sqrt{6}-2\right)=10+4\sqrt{6}\Leftrightarrow x=\dfrac{5\sqrt{6}}{6}+2\left(TM\right)\) \(\Rightarrow y=2\left(\dfrac{5\sqrt{6}}{6}+2\right)-1=\dfrac{5\sqrt{6}}{3}+3\) Vậy...
1: ĐKXĐ: a,b>0, a\(\ne b\)
\(\Rightarrow Q=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^3+2a\sqrt{a}+b\sqrt{b}}{3\sqrt{a}\left(a\sqrt{a}+b\sqrt{b}\right)}+\dfrac{\sqrt{a}\left(\sqrt{b}-\sqrt{a}\right)}{\sqrt{a}\left(a-b\right)}=\dfrac{a\sqrt{a}-3a\sqrt{b}+3b\sqrt{a}-b\sqrt{b}+2a\sqrt{a}+b\sqrt{b}}{3\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}-\dfrac{\sqrt{a}-\sqrt{b}}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\) \(=\dfrac{3\sqrt{a}\left(a-\sqrt{ab}+b\right)}{3\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}-\dfrac{1}{\sqrt{a}+\sqrt{b}}=\dfrac{1}{\sqrt{a}+\sqrt{b}}-\dfrac{1}{\sqrt{a}+\sqrt{b}}=0\)
\(\Rightarrow Q\) ko phụ thuộc vào a,b Vậy...
2: Ta có \(1\ge x+y\ge2\sqrt{xy}\Rightarrow xy\le\dfrac{1}{4}\)
\(\Rightarrow P=\dfrac{x+y}{xy}\cdot\sqrt{x^2y^2+\dfrac{1}{16}+\dfrac{1}{16}+...+\dfrac{1}{16}}\ge\dfrac{2\sqrt{xy}}{xy}\cdot\sqrt{17}\cdot\sqrt[34]{\dfrac{x^2y^2}{16^{16}}}=\sqrt{17}\cdot\dfrac{2}{\sqrt{xy}}\cdot\sqrt[17]{\dfrac{xy}{16^8}}\) \(=\sqrt{17}\cdot\sqrt[17]{\dfrac{2^{17}}{\sqrt{x^{17}y^{17}}}\cdot\dfrac{\sqrt{x^2y^2}}{2^{32}}=\sqrt{17}\cdot\sqrt[17]{\dfrac{1}{\sqrt{x^{15}y^{15}}\cdot2^{15}}}\ge\sqrt{17}\cdot\sqrt[17]{\dfrac{1}{\sqrt{\dfrac{1}{4^{15}}}\cdot2^{15}}}=\sqrt{ }17}\)
Dấu = xảy ra \(\Leftrightarrow x=y=\dfrac{1}{2}\) Vậy...
Bài 286: Bất đẳng thức neibizt khá nổi tiếng :D
Bđt <=> \(\dfrac{a}{b+c}+\dfrac{1}{2}+\dfrac{b}{c+a}+\dfrac{1}{2}+\dfrac{c}{a+b}+\dfrac{1}{2}\ge\dfrac{9}{2}\)
\(\Leftrightarrow\left(2a+2b+2c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{c+a}+\dfrac{1}{b+c}\right)\ge9\) ( Có thể đơn giản hóa bất đẳng thức bằng việc đặt biến phụ )
Đặt: \(\left\{{}\begin{matrix}x=b+c\\y=c+a\\z=a+b\end{matrix}\right.\) khi đó ta có: \(\left\{{}\begin{matrix}a=\dfrac{y+z-x}{2}\\b=\dfrac{z+x-y}{2}\\c=\dfrac{x+y-z}{2}\end{matrix}\right.\) Bất đẳng thức trở thành: \(\left(x+y+z\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge9\) ( luôn đúng theo AM-GM )
Vậy bất đẳng thức đã được chứng minh. Dấu "=" xảy ra tại a=b=c
C286.(Cách khác)
Áp dụng BĐT BSC và BĐT \(ab+bc+ca\le\dfrac{\left(a+b+c\right)^2}{3}\):
\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)
\(=\dfrac{a^2}{ab+ca}+\dfrac{b^2}{bc+ab}+\dfrac{c^2}{ca+bc}\)
\(\ge\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\ge\dfrac{\left(a+b+c\right)^2}{\dfrac{2}{3}\left(a+b+c\right)^2}=\dfrac{3}{2}\)
Đẳng thức xảy ra khi \(a=b=c\)
OK ANH ƠI
cố gắng tham gia cho vui nào.