K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
22 tháng 10 2021
Bài 5:
Ta có: \(3n+4⋮n-1\)
\(\Leftrightarrow n-1\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{2;0;8;-6\right\}\)
LT
22 tháng 10 2021
cảm ơn nha!!! Cho mik/em hỏi sao có mỗi bài 5 vậy bạn/anh/chị.
AH
Akai Haruma
Giáo viên
18 tháng 7 2024
1.
$4-n\vdots n+1$
$\Rightarrow 5-(n+1)\vdots n+1$
$\Rightarrow 5\vdots n+1$
$\Rightarrow n+1\in \left\{1; 5\right\}$
$\Rightarrow n\in \left\{0; 4\right\}$
AH
Akai Haruma
Giáo viên
18 tháng 7 2024
2.
Nếu $n$ chẵn $\Rightarrow n+6$ chẵn.
$\Rightarrow (n+3)(n+6)$ chẵn $\Rightarrow (n+3)(n+6)\vdots 2$
Nếu $n$ lẻ $\Rightarrow n+3$ chẵn.
$\Rightarrow (n+3)(n+6)$ chẵn $\Rightarrow (n+3)(n+6)\vdots 2$
Xét n có dạng 3k;3k+1;3k+2 (k lớn hơn hoặc = 0)
+ Nếu n=3k thì n(n+4)(n+8) = 3k(3k+4)(3k+8) luôn chia hết cho 3.
+ Nếu n=3k+1 thì n(n+4)(n+8)=(3k+1)(3k+1+4)(3k+1+8)
Vì 3k+1+8 = 3k+9=3(k+3) luôn chia hết cho 3 nên (3k+1)(3k+1+4)(3k+1+8) chia hết cho 3
+ Nếu n=3k+2 thì n(n+4)(n+8) có n+4 = 3k+2+4 = 3k+6 = 3(k+2) luôn chia hết cho 3.
Vậy với mọi stn n thì tích n(n+4)(n+8) luôn chia hết cho 3
\(n\left(n+4\right)\left(n+8\right)=\left(n^2+4n\right)\left(n+8\right)=n^3+8n^2+4n^2+32n\)
\(=n^3+12n^2+32n=12n^2+n.\left(n^2+32\right)\)
Do n.(n2 + 32) luôn chia hết cho 3 và 12n2 chia hết cho 3.
Vậy n( n + 4 )( n + 8 ) chia hết cho 3 (đpcm)