Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : \(\Delta'=\left(m+1\right)^2-\left(m^2+4m+3\right)=-2m-2\)
Để pt có 2 nghiệm phân biêt \(\Leftrightarrow\Delta'>0\Leftrightarrow m< -1\)
b) Theo hệ thức Viet \(\hept{\begin{cases}S=x_1+x_2=-2\left(m+1\right)\\P=x_1x_2=m^2+4m+3\end{cases}}\)
\(\Rightarrow A=m^2+4m+3+4\left(m+1\right)=m^2+4m+3+4m+4=m^2+8m+7\)
c) Ta có : \(A=m^2+8m+7=m^2+8m+16-9=\left(m+4\right)^2-9\ge-9\)
Dấu " = " xảy ra khi <=> m = -4 ( tm m < -1 )
Vậy minA = -9 tại m = -4
Xét \(x^2-\left(2m+1\right)x-3=0\left(1\right)\)
PT (1) có a.c=\(1\cdot\left(-3\right)=-3< 0\)
=> PT (1) luôn có 2 nghiệm phân biệt trái dấu với mọi m
Mà \(x_1< x_2\left(gt\right)\)nên x1<0 và x2>0 => \(\hept{\begin{cases}\left|x_1\right|=-x_1\\\left|x_2\right|=x_2\end{cases}}\)
Áp dụng hệ thức Vi-et ta có \(x_1+x_2=2m+1\)
Theo bài ra \(\left|x_1\right|-\left|x_2\right|=5\Rightarrow-x_1-x_2=5\Leftrightarrow x_1+x_2=-5\Leftrightarrow2m+1=-5\Leftrightarrow m=-3\)
\(\Delta'=\left(2m+1\right)^2-\left(4m^2+4m-3\right)=4\)
Phương trình đã cho luôn có 2 nghiệm: \(\left\{{}\begin{matrix}x=2m+3\\x=2m-1\end{matrix}\right.\)
Mà \(2m+3>2m-1\) \(\forall m\Rightarrow\left\{{}\begin{matrix}x_1=2m-1\\x_2=2m+3\end{matrix}\right.\)
\(\Rightarrow\left|2m-1\right|=2\left|2m+3\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}2m-1=4m+6\\1-2m=4m+6\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=-\frac{7}{2}\\m=-\frac{5}{6}\end{matrix}\right.\)
\(\Delta=\left(2m+1\right)^2-4\left(m^2+m\right)=1>0;\forall m\)
Đặt \(f\left(x\right)=x^2-\left(2m+1\right)x+m^2+m\)
Để pt có 2 nghiệm thỏa mãn \(-2< x_1< x_2< 4\)
\(\Leftrightarrow\left\{{}\begin{matrix}f\left(-2\right)>0\\f\left(4\right)>0\\-2< \frac{x_1+x_2}{2}< 4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m^2+m+2\left(2m+1\right)+4>0\\m^2+m-4\left(2m+1\right)+16>0\\-4< 2m+1< 8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2+5m+6>0\\m^2-7m+12>0\\-\frac{5}{2}< m< \frac{7}{2}\end{matrix}\right.\) \(\Rightarrow-2< m< 3\)