K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2023

Câu này làm thế nào vậy mn

giúp mình với

 

4 tháng 3 2023

xét ΔECB và ΔDBC, ta có : 

EC = BD (gt)

\(\widehat{B}=\widehat{C}\) (2 góc đáy của ΔABC cân tại A)

BC là cạnh chung

=> ΔECB = ΔDBC (c.g.c)

=> \(\widehat{GBC}=\widehat{GCB}\) (2 góc tương ứng)

vì ΔGBC có \(\widehat{GBC}=\widehat{GCB}\) nên ⇒ ΔGBC là một tam giác cân (cân tại G)

1 tháng 5 2019

Xét tgiac ACE. ADB:

góc A chung 

D=E=90¤

AB=AC

=> Tgiac ACE==ABD (c-h-g-n)

=> BD=CE ( 2ctu) và AE=AD ( sử dụng cho cậu c))

b) BD giao CE tại G=> G là trực tâm tgiac ABC 

=> AG vuông góc với BC

c) Xét 2 t giác AEG=ADG ( c-h-c-g-v)

=>GE=GD(2ctu) =>GB=GC=> tgiac GBC cân tại B

Xét ΔABD và ΔACE có

AB=AC

góc BAD chung

AD=AE

=>ΔABD=ΔACE
Sửa đề: ΔGBC cân tại G

Xét ΔEBC và ΔDCB có

EB=DC

góc EBC=góc DCB

BC chung

=>ΔEBC=ΔDCB

=>góc GBC=góc GCB

=>ΔGBC cân tại G

a: Xét ΔEBC và ΔDCB co

EB=DC
góc EBC=góc DCB

CB chung

=>ΔEBC=ΔDCB

=>EC=BD; góc GBC=góc GCB

=>GB=GC

=>GE=GD

=>ΔGED cân tại G

b: BD+CE=3/2(BG+CG)>3/2BC

a: Xét ΔADB và ΔAEC có

AD=AE
góc A chung

AB=AC

=>ΔADB=ΔAEC

b: Xet ΔEBC và ΔDCB có

EB=DC
góc EBC=góc DCB

BC chung

=>ΔEBC=ΔDCB

=>góc GBC=góc GCB

=>ΔGBC cân tại G

a: G là trọng tâm

=>BG=2/3BD; CG=2/3CE
=>BG=CG

=>DG=GE

b: Xet ΔEBC và ΔDCB có

BC chung

góc ECB=góc DBC

EC=BD

=>ΔEBC=ΔDCB

=>góc ABC=góc ACB

=>ΔACB cân tại A

4 tháng 3 2023

câu 2 : 

a) có phải là chứng minh AM ⊥ BC không

xét ΔAMB và ΔAMC, ta có : 

AB = AC (2 cạnh bên của ΔABC cân tại A)

MB = MC (AM là đường trung tuyến của cạnh BC)

AM là cạnh chung

=> ΔAMB = ΔAMC (c.c.c)

=> \(\widehat{AMB}=\widehat{AMC}\) (2 cạnh tương ứng)

mà \(\widehat{AMB}+\widehat{AMC}=180^O\) (kề bù)

\(\Rightarrow\widehat{AMB}=\widehat{AMC}=\dfrac{180^O}{2}=90^O\)

=> AM ⊥ BC

4 tháng 3 2023

loading...