\(a+b=1\)

\(\Rightarrow\left(a+b\right)^2=1\)

...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2017

Ta có:

M = a³ + b³ + 3ab(a² + b²) + 6a²b²(a + b) 

= (a+b)(a² - ab + b²) + 3ab[(a+b)² - 2ab] + 6a²b²(a +b ) 

= (a+b) [(a +b)² - 3ab] + 3ab[(a+b)² - 2ab] + 6a²b²(a +b ) 

_______thay a + b = 1 __________________: 
M = 1.(1 - 3ab) + 3ab(1 - 2ab) + 6a²b² 

M = 1 - 3ab + 3ab - 6a²b² + 6a² b² = 1

22 tháng 12 2018

M = a3 + b3 + 3ab(a2 + b2) + 6a2b2(a + b)

= (a + b)(a2 - ab + b2) + 3ab((a + b)2 - 2ab) + 6a2b2(a + b)

= (a + b)((a + b)2 - 3ab) + 3ab((a + b)2 - 2ab) + 6a2b2(a + b)

= 1 - 3ab + 3ab(1 - 2ab) + 6a2b2

= 1 - 3ab + 3ab - 6a2b2 + 6a2b2 = 1

3 tháng 7 2018

a)   \(x^2+2x+1=\left(x+1\right)^2\)

b)   \(9x^2+y^2+6xy=\left(3x+y\right)^2\)

c)   \(25a^2+4b^2-20ab=\left(5a-2b\right)^2\)

d)   \(x^2-x+\frac{1}{4}=\left(x-\frac{1}{2}\right)^2\)

e)   \(\left(2x+3y\right)^3+2\left(2x+3y\right)+1=\left(2x+3y+1\right)^2\)

f) mk chỉnh lại đề nha:

 \(2xy^2+x^2y^4+1=\left(xy^2+1\right)^2\)

g)  \(x^2+6xy+9y^2=\left(x+3y\right)^2\)

h)  \(x^2-10xy+25y^2=\left(x-5y\right)^2\)

3 tháng 7 2018

cảm ơn bn nha!

1 tháng 8 2019

a) Vì \(x-y=1\)

\(\Rightarrow\left(x-y\right)^3=1\)

\(\Leftrightarrow x^3-y^3-3xy\left(x-y\right)=1\)

\(\Leftrightarrow x^3-y^3-3xy=1\)

1 tháng 8 2019

b) \(B=2\left(x^3-y^3\right)-3\left(x+y\right)^2\)

\(=2\left(x-y\right)\left(x^2+xy+y^2\right)-3\left(x^2+2xy+y^2\right)\)

\(=4\left(x^2+xy+y^2\right)-3\left(x^2+2xy+y^2\right)\)

\(=4x^2+4xy+4y^2-3x^2-6xy-3y^2\)

\(=x^2-2xy+y^2\)

\(=\left(x-y\right)^2\)

\(=4\)

13 tháng 8 2018

1) \(\left(a+b\right)^3=\left(a+b\right)\left(a+b\right)^2=\left(a+b\right)\left(a^2+2ab+b^2\right)\)

\(=a^3+2a^2b+ab^2+a^2b+2ab^2+b^3\)

\(=a^3+3a^2b+3ab^2+b^3\)

2) \(\left(a-b\right)^3=\left(a-b\right)\left(a-b\right)^2=\left(a-b\right)\left(a^2-2ab+b^2\right)\)\(=a^3-2a^2b+ab^2-a^2b+2ab^2-b^3\)

\(=a^3-3a^2b+3ab^2-b^3\)

22 tháng 12 2018

M = a3 + b3 + 3ab(a2 + b2) + 6a2b2(a + b)

= (a + b)(a2 - ab + b2) + 3ab((a + b)2 - 2ab) + 6a2b2(a + b)

= (a + b)((a + b)2 - 3ab) + 3ab((a + b)2 - 2ab) + 6a2b2(a + b)

= 1 - 3ab + 3ab(1 - 2ab) + 6a2b2

= 1 - 3ab + 3ab - 6a2b2 + 6a2b2 = 1

9 tháng 12 2019

Có: M = a3 + b3 + 3ab(a2 + b2) + 6a2b2(a + b)

=> M = (a + b)(a2 - ab + b2) + 3ab((a + b)2 - 2ab) + 6a2b2(a + b)

=> M = (a + b)[(a + b)2 - 3ab] + 3ab[(a + b)2 - 2ab] + 6a2b2(a + b)

=> M = 1 - 3ab + 3ab(1 - 2ab) + 6a2b2     (vì a+b=1)

=> M = 1 - 3ab + 3ab - 6a2b2 + 6a2b2 

=> M = 1

Vậy M = 1

9 tháng 12 2019

M = \(a^3\)\(b^3\)+ 3ab ( \(a^2\)\(b^2\)) + \(6a^2\)\(b^2\)(a+b)

M = ( a + b ) ( \(a^2\)- ab + \(b^2\))  + 3ab [ \(a^2\)\(b^2\)+ 2ab( a + b )

M = \(a^2\)- ab + \(b^2\)+ 3ab ( \(a^2\)+ 2ab + \(b^2\))

Với a + b = 1

M= \(a^2\)- ab + \(b^2\)+ 3ab\(\left(a+b\right)^2\)

M = \(a^2\)- ab + \(b^2\)+ 3ab

M = \(a^2\)\(b^2\)+ 2ab

M = \(a^2\)+ 2ab + \(b^2\)

M = \(\left(a+b\right)^2\)

M = 1

Vậy M = 1

Câu a : \(-15a^2b^2\left(3ab^2-2a^2b+4b\right)=-45a^3b^4+30a^4b^3-60a^2b^3\)

Câu b : \(\left(a+2\right)\left(a-2\right)-\left(a+1\right)\left(a-1\right)=a^2-4-a^2+1=-3\)

Chúc bạn học tốt

28 tháng 9 2017

ta có
M = a³ + b³ + 3ab(a² + b²) + 6a²b²(a + b)

= (a+b)(a² - ab + b²) + 3ab[(a+b)² - 2ab] + 6a²b²(a +b )

= (a+b) [(a +b)² - 3ab] + 3ab[(a+b)² - 2ab] + 6a²b²(a +b )

_______thay a + b = 1 __________________:
M = 1.(1 - 3ab) + 3ab(1 - 2ab) + 6a²b²

M = 1 - 3ab + 3ab - 6a²b² + 6a² b² = 1

28 tháng 9 2017

Nhấn vào đây