Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\widehat{C}=30^0\)
b: \(\widehat{BAH}=30^0;\widehat{CAH}=60^0\)
d) Xét ΔHEB vuông tại E và ΔHFC vuông tại F có
HB=HC(ΔABH=ΔACH)
\(\widehat{B}=\widehat{C}\)(ΔABC cân tại A)
Do đó: ΔHEB=ΔHFC(Cạnh huyền-góc nhọn)
Suy ra: HE=HF(Hai cạnh tương ứng)
a. Ta có : \(\widehat{B}\)=30 MÀ ΔABC CÂN TẠI A
⇒\(\widehat{C}\)=30
MÀ \(\widehat{A}+\widehat{B}+\widehat{C}\)=180
⇒\(\widehat{A}\) + 30+30=180
⇒\(\widehat{A}\)=180-30-30
⇒\(\widehat{A}\)=120
xÉT ΔAHB vuông tại H, ΔAHC vuông tại H
CÓ : AB = AC (TAM GIÁC ABC CÂN TẠI A)
\(\widehat{B}=\widehat{C}\)(TAM GIÁC ABC CÂN TẠI A)
⇒ΔAHB = ΔAHC (C.HUYỀN-G.NHỌN)
⇒\(\widehat{BAH}=\widehat{CAH}\)
C.TRONG TAM GIÁC AHC VUÔNG TẠI H
⇒\(AC^2=HC^2+AH^2\)
⇒\(AC^2\)=\(4^2\)+\(3^2\)
⇒\(AC^2\)=16+9
AC=\(\sqrt{25}\)=5CM
D.XÉT ΔAHE VUÔNG TẠI E, ΔAHF VUÔNG TẠI F
CÓ: AH : CẠNH HUYỀN CHUNG
\(\widehat{BAH}=\widehat{CAH}\) (ΔAHB = ΔAHC)
⇒ΔAHE=ΔAHF( C.HUYỀN-G.NHỌN)
⇒HE=HF (2 CẠNH TƯƠNG ỨNG)
b) Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC(ΔABC cân tại A)
AH chung
Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)
Suy ra: \(\widehat{BAH}=\widehat{CAH}\)(hai góc tương ứng)
ΔABC vuông tại A
=>\(\widehat{ABC}+\widehat{ACB}=90^0\)
=>\(\widehat{ABC}+40^0=90^0\)
=>\(\widehat{ABC}=50^0\)
AD là phân giác của góc BAC
=>\(\widehat{BAD}=\widehat{CAD}=\dfrac{\widehat{BAC}}{2}=\dfrac{90^0}{2}=45^0\)
Xét ΔADB có \(\widehat{ADC}\) là góc ngoài tại đỉnh D
nên \(\widehat{ADC}=\widehat{DAB}+\widehat{ABD}=45^0+50^0=95^0\)
\(\widehat{ADB}+\widehat{ADC}=180^0\)(hai góc kề bù)
=>\(\widehat{ADB}+95^0=180^0\)
=>\(\widehat{ADB}=85^0\)
tuong tu ta co\(\widehat{CAH}=\widehat{ABH}\)
nốt tiếp đoạn sau nha bạn
ta có \(\widehat{BAC}=\widehat{BAH}+\widehat{CAH}=90^0\)
mà \(\widehat{AHC}=\widehat{ACH}+\widehat{CAH}=90^0\)
=>\(\widehat{ACH}=\widehat{BAH}\)
TƯƠNG TỰ TA CÓ:
Tự vẽ hình nhé :)
Ta có :
Ax//BC
=> C=XAC ( hai góc sole trong )
=> xAC=40
Ta lại có:
AH Vuông góc BC tại H
=> CHA=90
=> HAC= 180-(40+90)=50
b,
BAC=180-(40+60)=80
Ta có hình vẽ:
a) Nhận xét:
\(\widehat{xAc}=\widehat{aBc}\)
Mà \(\widehat{aCb}=40^o\Rightarrow\widehat{xAc}=40^o\)
Ta lại có: \(\frac{\left(60^o-40^0\right)}{2}=10^0\Rightarrow\widehat{cAh}=\widehat{xAc}+10^0\)
\(\Leftrightarrow\widehat{cAh}=50^o\)
b) \(\Rightarrow\widehat{bAc}=\left(50+40\right)^o-10^o=80^o\)
ΔABC vuông tại A
=>\(\widehat{ABC}+\widehat{ACB}=90^0\)
=>\(\widehat{ACB}+40^0=90^0\)
=>\(\widehat{ACB}=90^0-40^0=50^0\)
ΔBAH vuông tại H
=>\(\widehat{BAH}+\widehat{B}=90^0\)
=>\(\widehat{BAH}=90^0-40^0=50^0\)
ΔCAH vuông tại H
=>\(\widehat{HAC}+\widehat{C}=90^0\)
=>\(\widehat{HAC}=90^0-\widehat{C}=90^0-50^0=40^0\)
đúng ko z