K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2019

bạn ơi,câu hỏi này bạn hỏi trong chuyên đề toán ý

1/ Cho tam giác ABC vuông tại A và góc C bằng 30 độ . Vẽ trung trực của AC , cắt AC tại H và BC tại D , nối ADa)Chứng minh tam giác ABD đều(sẵn vẽ hình giúp mình nhé)b)Kẻ phân giác của góc B cắt AD tại K và cắt DH kéo dài I. CM: I là tâm đường tròn đi qua ba đỉnh của tam giác ADC c)Vẽ IE vuông góc với DC; IF vuông góc với AB kéo dài. CM:IF=IE=IK2/ Cho tam giác ABC vẽ AH vuông góc với BC. Gọi I và K lần...
Đọc tiếp

1/ Cho tam giác ABC vuông tại A và góc C bằng 30 độ . Vẽ trung trực của AC , cắt AC tại H và BC tại D , nối AD

a)Chứng minh tam giác ABD đều(sẵn vẽ hình giúp mình nhé)

b)Kẻ phân giác của góc B cắt AD tại K và cắt DH kéo dài I. CM: I là tâm đường tròn đi qua ba đỉnh của tam giác ADC 

c)Vẽ IE vuông góc với DC; IF vuông góc với AB kéo dài. CM:IF=IE=IK

2/ Cho tam giác ABC vẽ AH vuông góc với BC. Gọi I và K lần lượt là hình chiếu của H lên AB và AC. Kéo dài HI một đoạn ID=HI và kéo dài HK một đoạn KE=HK. CM:A nằm trên trung trực của DE( vẽ hình giúp mình nhé các bạn )

3/Cho tam giác ABC cân tại A,M và N là hai điểm tương ứng thuộc hai cạnh AB và AC sao cho BM=AN. Gọi O là điểm cách đều ba đỉnh A,B,C .CM: Ocách đều 2 điểm M và N

4/Trên cạnh AB,BC,AC của tam giác đều ABC . Lấy các điểm theo thứ tự M,N,P sao cho AM=BN=CP.Gọi O là giao điểm của 3 đường trung trực của tam giác ABC . CM: O cũng là giao điểm của ba đường trung trực của tam giác MNP

5/Cho tam giác đều ABC . Trên các cạnh BC,CA,AB lần lượt lất các điểm D,E,F sao cho BD=CE=AF.CM:

a)Tam giác AEF đều

b)Các trung trực của ABC và DEF cùng đi qua một điểm

6/Cho tam giác ABC vuông tại A. Tia phân giác BD và CE cắt nhai tại O 

a)Chứng tỏ O cách đều ba cạnh của tam giác 

b)Từ D và E hạ d8oừng vuông góc xuống BC và cắt CB tại H và K . Tính số đo góc HAk

Mong mọi người vẽ hình và giúp mình giải các bài trên nhé nếu có dài quá thì cho mình xin lỗi

0
25 tháng 11 2016

A B C I D E F 1 2 3 4 1 2 1 2

Giải:

Xét \(\Delta DIB\) có: \(\widehat{B_2}+\widehat{I_1}=90^o\) ( do \(\widehat{BDI}=90^o\) )

Xét \(\Delta FIB\) có: \(\widehat{B_1}+\widehat{I_2}=90^o\) ( do \(\widehat{IFB}=90^o\) )

\(\widehat{B_1}=\widehat{B_2}\left(=\frac{1}{2}\widehat{B}\right)\)

\(\Rightarrow\widehat{I_1}=\widehat{I_2}\) (*)

Xét \(\Delta DIB,\Delta FIB\) có:
\(\widehat{B_1}=\widehat{B_2}\left(=\frac{1}{2}\widehat{B}\right)\)

\(BI\): cạnh chung

\(\widehat{I_1}=\widehat{I_2}\) ( theo (*) )

\(\Rightarrow\Delta DIB=\Delta FIB\left(g-c-g\right)\)

\(\Rightarrow ID=IF\) ( cạnh tương ứng ) (1)

Xét \(\Delta EIC\) có: \(\widehat{I_3}+\widehat{C_2}=90^o\) ( do \(\widehat{IEC}=90^o\) )

Xét \(\Delta FIC\) có: \(\widehat{I_4}+\widehat{C_1}=90^o\) ( do \(\widehat{IFC}=90^o\) )

\(\widehat{C_1}=\widehat{C_2}\left(=\frac{1}{2}\widehat{C}\right)\)

\(\Rightarrow\widehat{I_3}=\widehat{I_4}\) (**)

Xét \(\Delta EIC,\Delta FIC\) có:
\(\widehat{C_1}=\widehat{C_2}\left(=\frac{1}{2}\widehat{C}\right)\)

\(IC\): cạnh chung

\(\widehat{I_3}=\widehat{I_4}\) ( theo (**) )

\(\Rightarrow\Delta EIC=\Delta FIC\left(g-c-g\right)\)

\(\Rightarrow IE=IF\) ( cạnh tương ứng )

Từ (1) và (2) suy ra \(ID=IF=IE\left(đpcm\right)\)

Vậy ID = IF = IE

25 tháng 11 2016

Xét 2 TG vuông DBI và EBI,ta có :

DBI=EBI (BI là phân giác của góc B);BI cạnh chung

=>TG DBI=TG EBI(cạnh huyền-góc nhọn)

=>ID=IE(2 cạnh tương ứng)

Xét 2 TG vuông EIC và FIC ,ta có:

ECI=FIC(CI là phân giác góc C);CI cạnh chung

=>TG DBI=TG EBI(cạnh huyền-góc nhọn)

=>IE=IF( 2 cạnh tương ứng)

Ta có : ID=IE(cmt),IE=IF(cmt)=>ID=IE=IF

 

Chúc bạn học tốt

 

Trl:

a) Vì I thuộc đường trung trực của BC và AD(gt))

=> IB=IC và IA=ID (theo định lí đường trung trực).

Xét 2 ΔAIB và DIC có:

AI=DI(cmt)

AB=DC(gt)

IB=IC(cmt)

=> ΔAIB=ΔDIC(c−c−c).

b) Theo câu a) ta có ΔAIB=ΔDIC

=> BAIˆ=CDIˆ (2 góc tương ứng).

Xét ΔADIcó:

IA=ID(cmt)

=> ΔADI cân tại I.

=> ADIˆ=DAIˆ(tính chất tam giác cân).

Hay CDIˆ=CAIˆ.

Mà BAIˆ=CDIˆ(cmt)

=> BAIˆ=CAIˆ

=> AI là tia phân giác của BACˆ.

                                                          ~Học tốt!~

16 tháng 11 2016

A B C I 90 90 90 D E F

16 tháng 11 2016

Xét tam giác EIC và tam giác FIC có:

IC chung

\(\widehat{ECI}\) = \(\widehat{FCI}\)

\(\widehat{IEC}\) = \(\widehat{IFC}\)

Suy ra 2 tam giác này bằng nhau (1)

 

xét tam giác DBI và tam giác FBI có:

BI chung

góc FBI bằng góc IBD

góc BDI bằng góc IFB

Suy ra 2 tam giác này bằng nhau (2)

Xét tam giác BIF và tam giác CIF có:

IF chung

góc IFC bằng góc IFB

góc IBF bằng góc ICF

Suy ra hai tam giác này bằng nhau (3)

TỪ (1), (2), (3) TA SUY RA ĐOẠN THẲNG IE = ID = IF ( 3 cạnh tương ứng)

1 tháng 12 2014

Xét 2 TG vuông DBI và EBI, ta có:

 DBI=IBE(BI là phân giác của góc B); BI:cạnh chung

=>TG DBI=TG EBI(cạnh huyền- góc nhọn)

=>ID=IE(2 cạnh tương ứng)

Xét 2 TG vuông EIC và FIC, ta có:

ECI=FCI(CI là phân giác góc C); CI:cạnh chung

=>TG EIC=TG FIC(cạnh huyền- góc nhọn)

=>IE=IF(2 cạnh tương ứng)

*Ta có: ID=IE(cmt); IE=IF(cmt)=>ID=IE=IF

4 tháng 12 2018

Xét tam giác BDI và tam giác BEI có

IB(cạnh chung, hay là cạnh huyền)

gócB1=gócB2(gt)

gócD=gócE(=90độ)

suy ra tam giac BDI =tam giác BEI (cạnh huyền, góc nhọn)

suy ra cạnh ID=cạnh IE (2 cạnh tương ứng)    (1)

Xét tam giác CEI và tam giác FIC có

IC ( cạnh chung,hay là cạnh huyền)

cạnh IE= cạnh IF(=90độ)

góc C1= góc C2( gt)

suy ra tam giác CEI = tam giác FIC(cạnh huyền, góc nhọn )     (2) 

Từ đó ta suy ra ID=IE=IF(đpcm)

Từ (1) và (2) suy ra cạnh