Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔOAC cân tại O
mà OD là đường cao
nên OD là phân giác của góc AOC
Xét ΔOAD và ΔOCD có
OA=OC
góc AOD=góc COD
OD chung
Do đó: ΔOAD=ΔOCD
=>góc OCD=90 độ
=>DC là tiếp tuyến của (O)
b: Xét ΔDCE và ΔDBC có
góc DCE=góc DBC
góc CDE chung
Do đó: ΔDCE đồng dạng với ΔDBC
=>DC/DB=DE/DC
=>DC^2=DB*DE
b, Vì DF//AB nên \(\widehat{DHC}=\widehat{BAC}\)(đồng vị)
mà \(\widehat{BAC}=\frac{1}{2}\widehat{BOC}=\widehat{DOC}\)(góc nội tiếp và góc ở tâm)
\(\Rightarrow\widehat{DOC}=\widehat{DHC}\)hay tứ giác DOHC nội tiếp
\(\Rightarrow\widehat{DHO}=\widehat{DCO}=90^0\)\(\Rightarrow OH\perp DF\)
câu c tí nữa làm :P
c, Từ a, b => 5 điểm B,O,H,C,D cùng nằm trên đường tròn đường kính OD
Vì tứ giác BHCD nội tiếp \(\Rightarrow ID.IH=IB.IC\)
Vì tứ giác BECF nội tiếp \(\Rightarrow IE.IF=IB.IC\)
\(\Rightarrow ID.IH=IE.IF\)