Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có bao nhiêu số có sáu chữ số mà tổng các chữ số của nó bằng 2?
6 số.
4 số.
5 số.
7 số.
Có bao nhiêu số có sáu chữ số mà tổng các chữ số của nó bằng 2?
6 số.
4 số.
5 số.
7 số.
a) Có n tia chung gốc. \(\rightarrow\)Có: \(\frac{n\left(n+1\right)}{2}\)(góc)
Lại có: \(\frac{n\left(n+1\right)}{2}=28\)
\(\Rightarrow n\left(n+1\right)=56=7.8\)
\(\Rightarrow n=7\)
Vậy \(n=7\)
b) Gọi số tia chung gốc ban đầu là n tia. \(\rightarrow\)Sau khi vẽ thêm 1 tia, tổng số tia chung gốc là n+1 tia
Ta có: \(\frac{\left(n+1\right)\left(n+2\right)}{2}-\frac{n\left(n+1\right)}{2}=9\)
\(\frac{\left(n+1\right)\left(n+2\right)-n\left(n+1\right)}{2}=9\)
\(\frac{\left(n+1\right)\left(n+2-n\right)}{2}=9\)
\(\frac{2\left(n+1\right)}{2}=9\)
\(n+1=9\)
\(n=8\)
Vậy \(n=8\)
a, - Tổng số góc không chứ góc bẹt là :
\(\dfrac{6\left(6-1\right)}{2}-3=12\) ( góc )
b, Ta có : \(\dfrac{n\left(n-1\right)}{2}=21\)
\(\Rightarrow n=7\) ( tia )
c, - Gọi số tia lúc ban đầu là n tia .
Theo bài ra ta có phương trình :\(\dfrac{\left(n+1\right)\left(\left(n+1\right)-1\right)}{2}-\dfrac{n\left(n-1\right)}{2}=9\)
\(\Leftrightarrow\dfrac{n\left(n+1\right)}{2}-\dfrac{n\left(n-1\right)}{2}=9\)
\(\Leftrightarrow\dfrac{n}{2}\left(\left(n+1\right)-\left(n-1\right)\right)=\dfrac{n}{2}.\left(n+1-n+1\right)=n=9\)
Vậy ...
28 góc chứ đâu ra mà tia
ờ nhầm