
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Em tham khảo tại đây nhé.
Câu hỏi của Hằng Dương Thị - Toán lớp 7 - Học toán với OnlineMath
Em kham khảo link này nhé.
Câu hỏi của Hằng Dương Thị - Toán lớp 7 - Học toán với OnlineMath

a: góc CAE=góc BAE=60/2=30 độ
góc KEB=90-30=60 độ
góc BED=góc AEC=90-30=60 độ
=>góc KEB=góc DEB
=>EB là phân giác của góc KED
góc AEK=góc BEK
=>EK là phân giác của góc BEA
b:Đề sai rồi bạn

a: Xét ΔBHA vuông tại Hvà ΔBHK vuông tại H có
BH chung
HA=HK
Do đó: ΔBHA=ΔBHK
=>BA=BK
=>\(\hat{BAK}=\hat{BKA}\)
b: ta có; \(\hat{BAD}=\hat{KAD}=\frac12\cdot\hat{BAK}\) (AD là phân giác của góc BAK)
\(\hat{BKI}=\hat{AKI}=\frac12\cdot\hat{BKA}\) (KI là phân giác của góc BKA)
mà \(\hat{BAK}=\hat{BKA}\)
nên \(\hat{BAD}=\hat{KAD}=\hat{BKI}=\hat{AKI}\)
Xét ΔBAD và ΔBKI có
\(\hat{BAD}=\hat{BKI}\)
BA=BK
\(\hat{ABD}\) chung
Do đó: ΔBAD=ΔBKI
=>BD=BI; AD=KI
Xét ΔBAK có \(\frac{BI}{BA}=\frac{BD}{BK}\)
nên IK//AK
=>AKDI là hình thang
Hình thang AKDI có AD=KI
nên AKDI là hình thang cân

a) Xét △BEA và △BAC có :
\(\widehat{E}=\widehat{A}\left(=90^o\right)\)
\(\widehat{B}\)là góc chung
\(\Rightarrow\)△BEA ~ △BAC (g.g)
b) +) Vì △BEA ~ △BAC
\(\Rightarrow\frac{AB}{BC}=\frac{BE}{AB}\)
\(\Rightarrow AB^2=BE.BC\)
\(\Rightarrow BE=1,8\left(cm\right)\)
+) Áp dụng định lý Pythagoras vào △ABC, ta được :
\(BC^2=AB^2+AC^2\)
\(\Rightarrow AC^2=5^2-3^2\)
\(\Rightarrow AC^2=16\)
\(\Rightarrow AC=4\left(cm\right)\)
+) Vì △BEA ~ △BAC
\(\Rightarrow\frac{AE}{AC}=\frac{BE}{AB}\)
\(\Rightarrow AE=\frac{AC.BE}{AB}=\frac{4\cdot1,8}{3}=2,4\left(cm\right)\)
c) Xét △BAI và △BEK có :
\(\widehat{A}=\widehat{E}=\left(90^o\right)\)
\(\widehat{ABI}=\widehat{IBC}\left(=\frac{1}{2}\widehat{ABC}\right)\)
\(\Rightarrow\)Vì △BAI ~ △BEK (g.g)
\(\Rightarrow\frac{EK}{AI}=\frac{BE}{BA}\)
\(\Rightarrow BE.AI=BA.EK\)(ĐPCM)
d) Vì BI là tia phân giác \(\widehat{B}\)của Vì △ABC
\(\Rightarrow\hept{\begin{cases}\frac{KA}{KE}=\frac{AB}{BE}\\\frac{IC}{IA}=\frac{BC}{AB}\end{cases}}\)
Vì Vì △BEA ~ △BAC
\(\Rightarrow\frac{AB}{BE}=\frac{BC}{AB}\)
\(\Rightarrow\frac{KA}{KE}=\frac{IC}{IA}\)(ĐPCM)