Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a )
xét 2 tam giác ABD và tam giác BHD có :
^B1 = ^ B2( BD là tia phân giác của ^ B)
BD cạnh chung
suy ra: tam giác ABD = tam giác BHD ( cạnh huyền - góc nhọn )
suy ra : AB = BH ( 2 cạnh tương ứng )
b)
trong tam giác vuông BHD có :
^ H = 90 độ
SUY RA ^ B2 +^D = 90 độ
suy ra : ^B2 = ^ D = 45 ĐỘ
MÀ ^ BDH = 45 độ
suy ra : ^ BDK = 45 độ ( góc D chung)
vậy ^ BDK = 45 độ
mình làm vậy đó nếu đúng thì cho minh 1 k , nếu sai thì thông cảm nha
a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó: ΔBAD=ΔBHD
Suy ra: DA=DH
b: Xét ΔADE vuông tại A và ΔHDC vuông tại H có
DA=DH
\(\widehat{ADE}=\widehat{HDC}\)
Do đó: ΔADE=ΔHDC
Suy ra: DE=DC
hay ΔDEC cân tại D
Cm: a) Xét t/giác ADB và t/giác EDB
có \(\widehat{BAD}=\widehat{BED}=90^0\)(gt)
BD : chung
\(\widehat{B_1}=\widehat{B_2}\)(gt)
=> t/giác ADB = t/giác EDB (ch - gn)
=> AB = BE ; AD = ED (các cặp cạnh t/ứng)
+) AD = ED => D thuộc đường trung trực của AE
+) AB = BE => B thuộc đường trung trực của AE
mà D \(\ne\)B => DB là đường trung trực của AE
=> DB \(\perp\)AE
b) Xét t/giác ADF và t/giác EDC
có: \(\widehat{A_1}=\widehat{DEC}=90^0\)(gt)
AD = DE (cmt)
\(\widehat{ADF}=\widehat{EDC}\) (đối đỉnh)
=> t/giác ADF = t/giác EDC (g.c.g)
=> DF = DC (2 cạnh t/ứng)
c) Ta có: AD < DF (cgv < ch)
Mà DF = DC (cmt)
=> AD < DC
d) Xét t/giác ABC có AB > AC
=> \(\widehat{BCA}>\widehat{B}\) (quan hệ giữa cạnh và góc đối diện)
=> \(\frac{1}{2}.\widehat{BCA}>\frac{1}{2}.\widehat{B}\)
hay \(\widehat{ICB}>\widehat{B_2}\)
=> BI > IC (quan hệ giữa góc và cạnh đối diện)
a) Xét tam giác vuông BED và tam giác vuông BAD ta có :
ABD = EBD ( BD là pg ABC )
BD chung
=> Tam giác BED = tam giác BAD ( ch-gn)
= >AD = DE( tg ứng)
b) Xét tam giác vuông AFD và tam giác vuông EDC ta có :
AD = DE (cmt)
ADF = EDC ( đối đỉnh)
=> Tam giác AFD = tam giác EDC ( cgv-gn)
=> DF = DC (dpcm)
c) Xét tam giác vuông DEC có
DE < DC( quan hệ giữa cạnh huyền và cạnh góc vuông trong tam giác)
Mà AD = DE (cmt)
=> AD < DC
d) chịu
a) Tam giác ABD và HBD có:
Góc A = góc H (=90 độ)
Góc ABD = HBD (BD là phân giác góc ABH)
Cạnh BD chung
=> Tam giác ABD = HBD (c.huyền-góc nhọn) (1)
b) Từ (1) => DA = DH
mà DH < DC (tam giác DHC cạnh góc vuông < cạnh huyền)
=> DA < DC
c) Tam giác ADI và tam giác HDC có:
Góc A = H (=90 độ)
Góc ADI = HDC (đối đỉnh)
Cạnh AD = HD (câu b)
=> Tam giác ADI = tam giác HDC (g-c-g) (2)
d) Từ (2) => DI = DC
=> Tam giác IDC cân tại D
MAY MINH BI HONG ROI KO VE DUOC co face ko minh gui anh hinh ve cho