K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBAD và ΔBED có

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔBAD=ΔBED
Suy ra: DA=DE

b: Xét ΔADK vuông tại A và ΔEDC vuông tại E có

DA=DE

\(\widehat{ADK}=\widehat{EDC}\)

Do đó:ΔADK=ΔEDC

Suy ra:DK=DC

hay ΔDKC cân tại D

c: BC=10cm

AB=6cm

=>AC=8cm

9 tháng 1 2022

khó đọc đc

a: AC=8cm

b: Xét ΔBAD và ΔBED có 

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔBAD=ΔBED

Suy ra: DA=DE

c: Xét ΔADK vuông tại A và ΔEDC vuông tại E có 

DA=DE

\(\widehat{ADK}=\widehat{EDC}\)

Do đó: ΔADK=ΔEDC

Suy ra: DK=DC

hay ΔDKC cân tại D

10 tháng 2 2019

tôi cũg đag cần giải bài này

14 tháng 4 2020

hình như đề bài sai thì phải

a: \(AC=\sqrt{BC^2-AB^2}=8\left(cm\right)\)

b: Xét ΔBAD và ΔBED có 

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔBAD=ΔBED

Suy ra: DA=DE

c: Xét ΔADK vuông tại A và ΔEDC vuông tại E có 

DA=DE

\(\widehat{ADK}=\widehat{EDC}\)

DO đó: ΔADK=ΔEDC

Suy ra: DK=DC

hay ΔDKC cân tạiD

5 tháng 4 2022

tự vẽ hình giúp mình nha ^^

áp dụng định lí py-ta-go vào tam giác vuông ABC

\(\Rightarrow AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC^2=BC^2-AB^2\)

\(\Leftrightarrow AC^2=10^2-6^2=100-36=64\)

\(\Rightarrow AC=\sqrt{64}=8\left(cm\right)\)

b) Xét \(\Delta BADvà\Delta BEDcó\)

BD:chung

\(\widehat{ABD}=\widehat{EBD}\left(gt\right)\)

AB=BE(gt)

\(\Delta BAD=\Delta BED\left(c-g-c\right)\)

=>DA=DE

c)Xét \(\Delta KADvà\Delta CEDcó\)

\(\widehat{KAD}=\widehat{CED}\left(=90^0\right)\)

\(\widehat{KDA}=\widehat{CDE}\) (đối đỉnh)

\(=>\Delta KAD=\Delta CED\left(g-c-g\right)\)

=>DC=DK

=> tam giác KDC cân tại D

 

5 tháng 2 2020

a, Xét tg ABD và tg EBD có :    AB = EB  (gt)

                                                  gABD = gEBD (BD là tia phân giác của gABE)

                                                  BD chung 

=> tgABD = tgEBD (c.g.c)

=> DA = DE ( hai cạnh tương ứng )

b,vì tgABD = tgEBD (cmt)

=>gABD = gAEB=90 độ   (hai góc tương ứng)

=>gDAK = gDEC = 90 độ 

xét tgAKD và tgEDC có:       gDAK = gDEC (cmt)

                                              AD = DE ( cmt)

                                              gADK = gEDC ( hai góc đối đỉnh)

=> tgAKD = tgEDC (g.c.g)

=> DK = DC (hai cạnh tương ứng)

=> tg DKC cân tại D

c,xét tgABC vuông tại A ( góc A = 90độ , theo định lí Pytago ta có 

  BC^2=AB^2 + AC^2 

=>AC^2 = 100- 36=64

=> AC = 8 (cm)

5 tháng 2 2020

a, xét tam giác ABD và tam giác EBD có : BD chung

BA = BE (Gt)

góc ABD = góc EBD do BD là phân giác của góc ABC  (gt)

=> tam giác ABD = tam giác EBD (c-g-c)

=> AD = DE (đn)

b, Xét tam giác DCE và tam giác KDA có : AD = DE (Câu a)

góc KDA = góc CDE (đối đỉnh)

góc CED = góc DAK = 90

=> tam giác CE = KA (đn)

có AB = BE (gt)

AB + KA = BK

BE + EC = BC

=> BC = BK 

=> BCK cân tại B (đn)

c, dùng ty ta go thôi

a) Xét ΔDAB và ΔDEB có 

BA=BE(gt)

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

BD chung

Do đó: ΔDAB=ΔDEB(c-g-c)

Suy ra: DA=DE(Hai cạnh tương ứng)

1. Cho ∆ABC vuông tại A (AB < AC). Vẽ tia BD là phân giác của góc ABC (D ∈ AC). Trên cạnh BC lấy điểm E sao cho BA = BE.a. Chứng minh: ∆BAD = ∆BEDb. Từ A kẻ AH ⊥ BC tại H. Chứng minh: AH // DEc. Trên tia đối của tia ED lấy điểm K sao cho ED = EK. Chứng minh: Góc EKC = góc ABC2.Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE = BA. Phân giác góc B cắt AC tại D. a. Chứng minh ∆ABD = Đồng ý∆EBD...
Đọc tiếp

1. Cho ∆ABC vuông tại A (AB < AC). Vẽ tia BD là phân giác của góc ABC (D ∈ AC). Trên cạnh BC lấy điểm E sao cho BA = BE.

a. Chứng minh: ∆BAD = ∆BED

b. Từ A kẻ AH ⊥ BC tại H. Chứng minh: AH // DE

c. Trên tia đối của tia ED lấy điểm K sao cho ED = EK. Chứng minh: Góc EKC = góc ABC

2.

Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE = BA. Phân giác góc B cắt AC tại D. 

a. Chứng minh ∆ABD = Đồng ý∆EBD và DE ⊥ BC

b. Gọi K là giao điểm của tia ED và tia BA. Chứng minh AK = EC.

c. Gọi M là trung điểm của KC. Chứng minh ba điểm B, D, M thẳng hàng.

3.

Cho tam giác ABC vuông tại A (AB < AC). Trên cạnh BC lấy điểm M sao cho BA = BM. Gọi E là trung điểm AM.

a.Chứng minh: ∆ABE = ∆MBE.

b. Gọi K là giao điểm BE và AC. Chứng minh: KM ⊥ BC,

c. Qua M vẽ đường thẳng song song với AC cắt BK tại F. Trên đoạn thẳng KC lấy điểm Q sao cho KQ = MF. Chứng minh: góc ABK = QMC

4

 

Cho tam giác ABC có AB = AC, lấy M là trung điểm của BC.

a) Chứng minh ∆ABM = ∆ACM

b) Kẻ ME ⊥ AB tại Em kẻ MF ⊥ AC tại F. Chứng minh AE = AF.

c) Gọi K là trung điểm của EF. Chứng minh ba điểm A, K, M thẳng hàng

d) Từ C kẻ đương thẳng song song với AM cắt tia BA tại D. Chứng minh A là trung điểm của BD.

2

4:

a: Xet ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC
=>ΔAMB=ΔAMC

b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

góc EAM=góc FAM

=>ΔAEM=ΔAFM

=>AE=AF
c: AE=AF
ME=MF

=>AM là trung trực của EF

mà K nằm trên trung trực của EF

nên A,M,K thẳng hàng

28 tháng 4 2023

4:

a: Xet ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC
=>ΔAMB=ΔAMC

b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

góc EAM=góc FAM

=>ΔAEM=ΔAFM

=>AE=AF
c: AE=AF
ME=MF

=>AM là trung trực của EF

mà K nằm trên trung trực của EF

nên A,M,K thẳng hàng

BÀI 1: Cho ∆ABC nhọn. Vẽ về phía ngoài ∆ABC các ∆ đều ABD và ACE. Gọi M là giao điểm của BE và CD. Chứng minh rằng:a) ∆ABE = ∆ADC b) Góc BMC = 120oBài 2: Cho tam giác ABC có ba góc nhọn, đường cao AH. ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông góc với AH (M, N thuộc AH).a) Chứng minh: EM + HC = NH.b) Chứng minh: EN // FM.Bài 3:Cho...
Đọc tiếp

BÀI 1: Cho ∆ABC nhọn. Vẽ về phía ngoài ∆ABC các ∆ đều ABD và ACE. Gọi M là giao điểm của BE và CD. Chứng minh rằng:

a) ∆ABE = ∆ADC b) Góc BMC = 120o

Bài 2: Cho tam giác ABC có ba góc nhọn, đường cao AH. ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông góc với AH (M, N thuộc AH).

a) Chứng minh: EM + HC = NH.

b) Chứng minh: EN // FM.

Bài 3:Cho cạnh hình vuông ABCD có độ dài là 1. Trên các cạnh AB, AD lấy các điểm P, Q sao cho chu vi DAPQ bằng 2.

Chứng minh rằng : Góc PCQ = 45o

Bài 4:Cho tam giác vuông cân ABC (AB = AC), tia phân giác của các góc B và C cắt AC và AB lần lượt tại E và D.

a) Chứng minh rằng: BE = CD; AD = AE.

b) Gọi I là giao điểm của BE và CD. AI cắt BC ở M, chứng minh rằng các ∆MAB; MAC là tam giác vuông cân.

c) Từ A và D vẽ các đường thẳng vuông góc với BE, các đường thẳng này cắt BC lần lượt ở K và H. Chứng minh rằng KH = KC.

Bài 5: Cho tam giác cân ABC (AB = AC ). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M, N. Chứng minh rằng:

a) DM = EN

b) Đường thẳng BC cắt MN tại trung điểm I của MN.

c) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.

0

a: Xét ΔBAD và ΔBED có

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔBAD=ΔBED

Suy ra: DA=DE

b: Xét ΔADK vuông tại A và ΔEDC vuông tại E có

DA=DE

\(\widehat{ADK}=\widehat{EDC}\)

Do đó: ΔADK=ΔEDC

Suy ra: DK=DC
hay ΔDKC cân tại D

c: \(AC=\sqrt{BC^2-AB^2}=8\left(cm\right)\)

d: Ta có: DK=DC

mà DC>DE

nên DK>DE

a: Xét ΔBAD và ΔBED có 

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔBAD=ΔBED

Suy ra: DA=DE

b: Ta có: ΔBAD=ΔBED

nên \(\widehat{BAD}=\widehat{BED}=90^0\)

c: Xét ΔADF vuông tại A và ΔEDC vuông tại E có 

AD=ED

AF=EC

Do đó: ΔADF=ΔEDC

Suy ra: \(\widehat{ADF}=\widehat{EDC}\)

=>\(\widehat{ADF}+\widehat{ADE}=180^0\)

=>E,F,D thẳng hàng