Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
a)Nối AD,AE.Ta có :
AD = AH vì nằm trên đường trung tuyến của DH
AE = AH vì nằm trên đường trung tuyến của EH
=> AD = AE hay tam giác ADE cân
Xét \(\Delta ADB\)và \(\Delta AHB\)
+ AB chung
+ AD = AH
+\(\widehat{DAB}=\widehat{HAB}\)
\(\Rightarrow\Delta ADB=\Delta AHB\left(c.g.c\right)\)
\(\Rightarrow\widehat{ADB}=\widehat{AHB}=90^0\)
Chứng minh tương tự ta được tam giác AEC vuông tại E
Suy ra \(90^0-\widehat{ADE}=90^0-\widehat{AED}\Leftrightarrow\widehat{IDB}=\widehat{KEC}\)
Mà \(\widehat{IDB}=\widehat{IHB};\widehat{KEC}=\widehat{KHC}\)
\(\Rightarrow\widehat{IHB}=\widehat{KHC}\)
Kéo dài IH về phía H.Lấy điểm S bất kì thuộc tia đối của IH
Xét tam giác IKH có KC là tia phân giác của góc ngoài HKE và HC là tia phân giác góc ngoài KHS
Chứng minh HC là phân giác của góc KHS
Ta có \(\widehat{IHB}=\widehat{CHS}=\widehat{KHC}\)(đối đỉnh)
\(\Rightarrow\widehat{KHC}=\widehat{CHS}\)
Vậy hai tia phân giác của hai góc ngoài của tam giác IKH cắt nhau tại .Suy ra IC là tia phân giác của góc KIH
b) Ta có IB là phân giác của góc DIH
IC là phân giác của góc HIK
Mà hai góc trên kề bù
=> IB và IC vuông góc với nhau
(Hình bạn lên mạng tra theo đề là ra nhiều lắm nhé mình ko biết vẽ hình trên OLM bạn thông cảm)
M thuộc đường trung trực của HD nên MH = MD. MB là đường trung trực của đáy HD của tam giác cân HMD nên MB là tia phân giác của góc HMD. Tương tự NC là tia phân giác của góc HNE. Vậy MB, NC là các đường phân giác góc ngoài của ΔHMN.
Các đường thẳng MB, NC cắt nhau tại A nên HA là đường phân giác trong của góc MHN của ΔHMN.
+) HC vuông góc với HA tại H mà HA là đường phân giác trong của góc MHN nên HC là đường phân giác góc ngoài của ΔHMN.( đường phân giác góc trong và góc ngoài tại 1 đỉnh của 1 tam giác vuông góc với nhau)
+) Các đường thẳng HC và NC cắt nhau tại C; HC và NC là hai đường phân giác ngoài của tam giác HMN nên MC là đường phân giác góc trong của ΔHMN.
MB và MC là các tia phân giác của hai góc kề bù ∠DMH; ∠HMA nên MB ⊥ MC.
Vậy MC ⊥ AB.
a) Vì A thuộc đường trung trực của HD nên suy ra :AD=AH (1)
Vì A thuộc đường trung trực của HE nên suy ra :AE=AH (2)
Từ (1) và (2) ta có: AD=AH=AE
=> AD=AE(đpcm)
b) Kẻ I với H ; K với H
Theo câu a ta có AD=AE
=>Tam giác ADE cân tại A => góc ADE =góc AED
Vì AD=AH nên =>tam giác ADH cân tại A
=>góc ADH =góc AHD (1)
Vì AE=AH nên => tam giác AHE cân tại A
=> góc AHE=góc AEH (2)
Vì K thuộc đường trung trực của HE
=> KE = KH => tam giác KHE cân tại K
=> góc KHE =góc KEH (3)
Vì I thuộc đường trung trực của HD
=> ID = IH => tam giác IDH cân tại I
=> góc IDH =góc IHD (4)
Từ (1)và (4) =>góc ADE=AHI
Từ (2)và (4) =>góc AED=AHK
Mà ADE=AED(cmt) => AHI=AHK
Vậy suy ra HA là tia p/g của góc IHK
a) Vì A thuộc đường trung trực của HD nên suy ra :AD=AH (1)
Vì A thuộc đường trung trực của HE nên suy ra :AE=AH (2)
Từ (1) và (2) ta có: AD=AH=AE
=> AD=AE(đpcm)
b) Kẻ I với H ; K với H
Theo câu a ta có AD=AE
=>Tam giác ADE cân tại A => góc ADE =góc AED
Vì AD=AH nên =>tam giác ADH cân tại A
=>góc ADH =góc AHD (1)
Vì AE=AH nên => tam giác AHE cân tại A
=> góc AHE=góc AEH (2)
Vì K thuộc đường trung trực của HE
=> KE = KH => tam giác KHE cân tại K
=> góc KHE =góc KEH (3)
Vì I thuộc đường trung trực của HD
=> ID = IH => tam giác IDH cân tại I
=> góc IDH =góc IHD (4)
Từ (1)và (4) =>góc ADE=AHI
Từ (2)và (4) =>góc AED=AHK
Mà ADE=AED(cmt) => AHI=AHK
Vậy suy ra HA là tia p/g của góc IHK
A = 100* => B^ = C^ = 40*
trên CA lấy điểm E sao cho CB = CE
C^ = 40* và MCB^ = 20* => MCB^ = MCE^ = 20*
=> ΔCBM = Δ CEM ( c.g.c) => MEC^ = MBC^ = 10*
BCE^ = 40* và Δ BCE cân tại C => CEB^ = (180* - 40*)/2 = 70*
=>MEB^ = 60* (1)
ΔCBM = Δ CEM => MB = ME (2)
(1) và (2) => BME là tam giác đều MB = BE (1*)
ABC^ = 40* ; MBC^ = 10* => ABM^ = 30*
ABE^ = CBE^ - ABC^ = 70* - 40* = 30*
=> ABM^ = ABE^ (2*)
(1*) và (2*) => ΔABM = Δ ABE (vì có thêm AB là cạnh chung)
=> AMB^ = AEB^ = 70*
UhkbijhihguhftfWegvhhhhvhiggyghkbhijmkjiphfuhfygggubh
a) IB là đường trung trực của HD nên ID = IH => \(\Delta IDH\) cân tại I.IB là đường cao,phân giác,trung tuyến,trung trực
b) Xét \(\Delta HIK\) , IB là đường phân giác của góc ngoài tại I ,tương tự KC là đường phân giác của góc ngoài tại K,chúng cắt nhau ở A nên HA là tia phân giác của góc IHK
P/S : Máy hơi bị lag mạnh nên thông cảm