Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mù ak, ghi dấu rùi ây! ko tl dc thì ra chỗ khác đỡ tốn chỗ giải toán
Giả thiết: Hai đường thẳng song song
Kết luận: Các tia phân giác của mỗi cặp góc đồng vị song song với nhau
A B C H D I
GT:AH vuông BC
AD=AB
DI vuông AH
KL:BH=ID
Bài làm
Ta có:
\(\widehat{A1}=\widehat{A2}\)(đối đỉnh)(1)
\(AB=AD\)(GT)(2)
mà\(\widehat{B}=180^0-90^0-\widehat{A1}\)
\(\widehat{D}=180^0-90^0-\widehat{A2}\)
và\(\widehat{A1}=\widehat{A2}\)
=>\(\widehat{B}=\widehat{D}\)(3)
Từ (1),(2),(3) suy ra:\(\Delta\)ABH=\(\Delta\)ADI(g-c-g)
=>BH=ID(hai cạnh tương ứng)
Vậy BH=ID
Giả sử 2 dường thẳng xx' và yy' cắt nhau tại O
Kẻ Ot là tia fg góc xOy
và Ot' là tia fg góc x'Oy'. Ta phải chứng minh Ot và Ot' cùng nằm trên 1 đường thẳng hay tOt'=180o
tOt'=tOx+xOt' (tia Ox nằm giữa 2 tia Ot,Ot')
mà tOx=x'Ot' (cùng =1/2 hai góc đối đỉnh)
nên tOt'=x'Ot'+t'Ox=xOx'=180o (tia Ot' nằm giữa 2 tia Ox,Ox')
vậy Ot và Ot'là 2 tia đối nhau
.
x t m n o y z
Ta có : \(\widehat{tOn}+\widehat{tOx}+\widehat{xOm}=180^o\)
\(\widehat{mOy}+\widehat{yOz}+\widehat{zOn}=180^o\)
\(\Rightarrow\widehat{nOt}+\widehat{xOt}+\widehat{xOm}=\widehat{zOn}+\widehat{yOz}+\widehat{mOy}\) ( vì \(\widehat{tOn}=\widehat{nOz}\) và \(\widehat{xOm}=\widehat{mOy}\) ) nên \(\widehat{xOt}=\widehat{yOz}\)
Vì \(\widehat{xOt}\) đối đỉnh với \(\widehat{yOz}\) nên Ot là tia đối của Ox mà On là tia đổi của Om vậy \(\widehat{tOn}\) và \(\widehat{mOy}\) là hai góc đối đỉnh
gọi góc 1 là ^ABC và góc 2 là ^DBE tia phân giác góc ^ABC là BX và góc DBC là BY
Giải
ta có gó ABC=DBE suy ra góc ABX= DBY lại có BA đối DB
nên suy ra góc ABX đối đỉnh góc DBY
suy ra BY đối BX
bạn thấy đúng không mình nghĩ đỉnh của mình không đúng lắm nhưng mình nghĩ cách giải là như vậy (bạn nên vẽ hình nhé)
bạn nhớ hồi âm nếu mình đúng nhé