K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2017

Cho tam giác ABC với đường cao AH. Ta dựng hình chữ nhật có một cạnh bằng một cạnh của tam giác ABC và có diện tích bằng diện tích tam giác ABC như hình dưới

Ta có ∆EBM = ∆KAM và ∆DCN = ∆ KAN

Suy ra

SBCDE = SABC= BC. AH

Ta đã tìm được công thức tính diện tích tam giác bằng một phương pháp khác.

8 tháng 8 2018

Giải bài 20 trang 122 Toán 8 Tập 1 | Giải bài tập Toán 8

Cho ΔABC với đường cao AH.

Gọi M, N, I là trung điểm của AB, AC, AH.

Lấy E đối xứng với I qua M, D đối xứng với I qua N.

⇒ Hình chữ nhật BEDC là hình cần dựng.

Thật vậy:

Ta có ΔEBM = ΔIAM và ΔDCN = ΔIAN

⇒ SEBM = SAMI và SCND = SAIN

⇒ SABC = SAMI + SAIN + SBMNC = SEBM + SBMNC + SCND = SBCDE.

Suy ra SABC = SBCDE = BE.BC = 1/2.AH.BC. (Vì BE = IA = AH/2).

Ta đã tìm lại công thức tính diện tích tam giác bằng một phương pháp khác

30 tháng 5 2018

Giải bài 33 trang 128 Toán 8 Tập 1 | Giải bài tập Toán 8

Cho hình thoi ABCD, vẽ hình chữ nhật có một cạnh là đường chéo BD, cạnh kia bằng IC (bằng nửa AC).

Khi đó diện tích của hình chữ nhật BDEF bằng diện tích hình thoi ABCD.

Giải bài 33 trang 128 Toán 8 Tập 1 | Giải bài tập Toán 8

Từ đó suy ra cách tính diện tích hình thoi: Diện tích hình thoi bằng nửa tích hai đường chéo.

21 tháng 4 2017

Giải bài 34 trang 128 Toán 8 Tập 1 | Giải bài tập Toán 8Giải bài 34 trang 128 Toán 8 Tập 1 | Giải bài tập Toán 8

21 tháng 4 2017

Cho hình thoi MNPQ, vẽ hình chữ nhật có một cạnh là đường chéo MP, cạnh kia bằng IN ( IN= 12 NQ).

Khi đó diện tích của hình chữ nhật MPBA bằng diện tích hình thoi MNPQ.

Thật vậy SMPBA = MP. IN = MP. 12 NQ

= 12 MP. NQ = SMNPQ

10 tháng 2 2017

Cho hình thoi MNPQ, vẽ hình chữ nhật có một cạnh là đường chéo MP, cạnh kia bằng IN ( IN=  NQ).

Khi đó diện tích của hình chữ nhật MPBA bằng diện tích hình thoi MNPQ.

Thật vậy SMPBA = MP. IN = MP.  NQ

                                          =  MP. NQ = SMNPQ

10 tháng 2 2017

Cho hình thoi MNPQ, vẽ hình chữ nhật có một cạnh là đường chéo MP, cạnh kia bằng IN ( IN=  NQ).

Khi đó diện tích của hình chữ nhật MPBA bằng diện tích hình thoi MNPQ.

Thật vậy SMPBA = MP. IN = MP.  NQ

                                          =  MP. NQ = SMNPQ

21 tháng 4 2017


bai-34

Cho hình chữ nhật ABCD; M,N,P,Q lần lượt là trung điểm của AB,BC, CD, DA.
* Chứng minh MNPQ là hình thoi

Ta có MN = PQ = 1/2BD

NP = MQ = 1/2 AC

Mà AC = BD

⇒ MN = NP = PQ = QM nên tứ giác MNPQ là hình thoi (Có 4 cạnh bằng nhau)

* Theo bài 33 (các em tham khảo ở trên), ta có SMNPQ = SABNQ và SMNPQ = SNQDC

Vì vậy SABCD = SABNQ + SNQDC = 2SMNPQ

* Ta có SABCD =2SMNPQ ⇒ SMNPQ = 1/2SABCD = 1/2AB.BC = 1/2NQ.MP

21 tháng 4 2017

Vẽ hình chữ nhật ABCD với các trung điểm các cạnh M, N, P, Q.

Vẽ tứ giác MNPQ

Ta có MN = PQ = \(\dfrac{1}{2}\)BD

NP = MQ = \(\dfrac{1}{2}\) AC

Mà AC = BD

Nên tứ giác MNPQ là hình thoi vì có bốn cạnh bằng nhau.

Dễ dàng chứng minh rằng : ∆AMN = ∆INM , ∆BPN = ∆NIP

∆PCQ = ∆IQP, ∆DMQ = IQM

Do đó

SMNPQ = \(\dfrac{1}{2}\) SABCD mà SABCD = AB. AD = MP. NQ

Vậy SMNPQ = \(\dfrac{1}{2}\) MP.NQ



7 tháng 12 2019

Bài tập tổng hợp chương 2 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Xét Δ ABC cân tại A có AB = AC = b, BC = a.

Từ A kẻ AH ⊥ BC.

Ta có BH = HC = 1/2BC = a/2

Khi đó ta có: S A B C   =   1 2 A H . B C   =   1 2 . a . A H

Áp dụng định lý Py – to – go ta có:

A C 2   =   A H 2   +   H C 2   ⇒   A H   =   A C 2   -   H C 2

Khi đó SABC = 1/2AH.BC

Bài tập tổng hợp chương 2 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Do đó diện tích của tam giác đều các cạnh bằng a làBài tập tổng hợp chương 2 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án