K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1/ Cho đường tròn (O) đường kính AB và 1 điểm C trên đường tròn.Từ O kẻ 1 đường thảng song song với dây AC , đường thảng này cắt tiếp tuyến tại B của đường tròn ở điển C A) CM: OD là phân giác của góc BOC b) CN: CD là tiếp tuyến của đường tròn2/ Cho đường tròn (O;R), H là điểm bên trong đường tròn (H không trùng với O). Vẽ đưởng kính AB đi qua H (HB < HA). Vẽ dây CD vuông góc với AB...
Đọc tiếp

1/ Cho đường tròn (O) đường kính AB và 1 điểm C trên đường tròn.Từ O kẻ 1 đường thảng song song với dây AC , đường thảng này cắt tiếp tuyến tại B của đường tròn ở điển C A) CM: OD là phân giác của góc BOC b) CN: CD là tiếp tuyến của đường tròn

2/ Cho đường tròn (O;R), H là điểm bên trong đường tròn (H không trùng với O). Vẽ đưởng kính AB đi qua H (HB < HA). Vẽ dây CD vuông góc với AB tại H. CMR:
a) Góc BCA = 90 độ           b) CH . HD = HB . HA       c) Biết OH = R/2. Tính diện tích  tam giác ACD theo R

3/ Cho tam giác MAB,  vẽ đường tròn (O) đường kính AB cắt MA ở C,  cắt MB ở D. Kẻ AP vuông góc CD , BQ cuông góc CD. Gọi H là giao điểm AD và BC. CM: 
a) CP = DQ                    b) PD . DQ = PA . BQ và QC . CP = PD . QD                 c) MH vuông góc AB\

4/ Cho đường tròn (O;5cm) đường kính AB,  gọi E là 1 điểm trên AB sao cho BE = 2cm.Qua trung điểm kH của đoạn AE vẽ dây cung CD vuông góc AB.
a) Tứ giác ACED là hình gì? Vì sao?                b)Gọi I là giao điểm của DE với BC. CMR:I thuộc đường tròn (O') đường kính EB
c) CM HI là tiếp điểm của đường tròn (O')          d) Tính độ dài đoạn HI

5/ Cho đường tròn (0) đường kính AB = 2R. Gọi I là trung điểm của AO, qua I kẻ dây CD vuông góc với OA.
a) Tứ giác ACOD là hình gì? tại sao?   
b) CM tam giác BCD đều
c) Tính chu vi và diện tích tam giác BCD theo R

6/ Cho tam giác ABC vuông tại A có đường cao AH. Biết AB = 9cm; BC = 15cm
a) Tính độ dài các cạnh AC, AH, BH, HC
b) Vẽ đường tròn tâm B, bán kính BA. Tia AH cắt (B) tại D. CM: CD là tiếp tuyến của (B;BA)
c) Vẽ đường kính DE. CM: EA // BC
d) Qua E vẽ tiếp tuyến d với (B). Tia CA cắt d tại F, EA cắt BF tại G. CM: CF = CD + EF và tứ giác AHBG là hình chữ nhật

7/ Cho đường tròn (O) đường kính AB, điểm M thuộc đường tròn. Vẽ điểm N đối xứng với A qua M. BN cắt đường tròn ở C. gọi E là giao điểm của AC và BM.
a) CMR: NE vuông góc AB
b) Gọi F là điểm đối xứng với E qua M. CMR: FA là tiếp tuyến của đường tròn (O)
c) CM: FN là tiếp tuyến của đường tròn (B;BA)

8/ Cho nửa đường tròn (O), đường kính AB.Từ một điểm M trên nửa đường tròn ta vẽ tiếp tuyến xy. Từ A ta vẽ AD vuông góc với xy tại D
a) CM: AD // OM
b) Kẻ BC vuông góc với xy tại C. CMR: MC = MD
 

2
18 tháng 9 2016

Cần giải thì liên lạc face 0915694092 nhá

7 tháng 12 2017

giúp tôi trả lời tất cả câu hỏi đề này cái

a: ΔOCD cân tại O

mà OH là đường cao

nên H là trung điểm của CD

=>HC=HD

Xét ΔBCD có

BH vừa là đường cao, vừa là đường trung tuyến

Do đó: ΔBCD cân tại B

=>BC=BD

b: ΔOCD cân tại O

mà OH là đường cao

nên OH là phân giác của góc COD

c: góc ICA=1/2*sđ cung CA

góc OBC=góc ABC=1/2*sđ cung CA

Do đó: góc ICA=góc OBC

Xét ΔOCI và ΔODI có

OC=OD

góc COI=góc DOI

OI chung

Do đó: ΔOCI=ΔODI

=>góc OCI=góc ODI=90 độ

=>ID vuông góc DO

9 tháng 4 2017

Đề kiểm tra Toán 9 | Đề thi Toán 9

b) Ta có: OM = OA + AM = R + R = 2R

Xét tam giác MCO vuông tại C, CH là đường cao có:

MO 2 = MC 2 + OC 2

Đề kiểm tra Toán 9 | Đề thi Toán 9

CH.OM = CM.CO

Đề kiểm tra Toán 9 | Đề thi Toán 9

Lại có: CD = 2CH ⇒ CD = R 3

Tam giác CDE nội tiếp (O) có CE là đường kính nên ΔCDE vuông tại D

Theo định lí Py ta go ta có:

CE 2 = CD 2 + DE 2

Đề kiểm tra Toán 9 | Đề thi Toán 9

2 tháng 4 2016

a)   Xet tam giac COA can tai O(  OA= OC) co CI vua la duong cao vua la trung tuyen ung voi AO nen tam giac OAC deu. Suy ra goc COA bang 60do , suy ra so do cung CA bang 60do. Suy ra goc COB bang 180-60=120 suy ra so do cung CA bang 120. Co: HCA=1/2sd cungCA=60/2=30         (1)

Co goc CHB=1/2(sd cungCB- sd cungCA) =1/2(120-60)=1/2*60=30   (2)

Tu (1); (2) suy ra: tam giac ACH can tai A. Suy ra AC= AH      (3)

Lai co: tam giac CAO deu nen CA= CO         (4)

Tu (3);(4)suy ra CA=CO=AH⏩ tam giac CHO vuong tai C

➡CO vuong goc voi HC tai C

Vay HC la tiep tuyen

b).       Tu giac ACOD la hinh thoi

Tu giac co 4 canh ( CA= CO=OD=DA) bang nhau

c).        

29 tháng 8 2017

Đề kiểm tra Toán 9 | Đề thi Toán 9

d) Ta có: ∠(CFE) = 90 0  (F thuộc đường tròn đường kính CE)

Lại có CF là đường cao nên MC 2  = MF.ME

Tương tự, ta có:  MC 2  = MH.MO

⇒ ME.MF = MH.MO

Đề kiểm tra Toán 9 | Đề thi Toán 9

Xét ΔMOF và ΔMEN có:

Đề kiểm tra Toán 9 | Đề thi Toán 9

∠(FMO) chung

⇒ ΔMOF ∼ ΔMEN (c.g.c)

⇒ ∠(MOF) = ∠(MEH)

a: Xét ΔCOB có

CI là đường cao

CI là đường trung tuyến

Do đó: ΔCOB cân tại C

mà OC=OB

nên ΔCOB đều

=>\(\widehat{COB}=60^0=\widehat{CBA}\)

Xét ΔOCE vuông tại C có \(cosCOB=\dfrac{OC}{OE}\)

=>\(\dfrac{R}{OE}=\dfrac{1}{2}\)

=>OE=2R

b: 

ΔOCE vuông tại C

=>\(\widehat{COE}+\widehat{CEO}=90^0\)

=>\(\widehat{CEO}=90^0-60^0=30^0\)

ΔOCD cân tại O

mà OE là đường cao

nên OE là phân giác của góc COD

Xét ΔOCE và ΔODE có

OC=OD

\(\widehat{COE}=\widehat{DOE}\)

OE chung

Do đó: ΔOCE=ΔODE
=>\(\widehat{CEO}=\widehat{DEO}=30^0\)

=>\(\widehat{CED}=60^0\)

Xét ΔECD có

EI là đường cao

EI là trung tuyến

Do đó: ΔECD cân ạti E

=>EC=ED

Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

=>\(\widehat{CAB}+\widehat{CBA}=90^0\)

=>\(\widehat{CAB}=90^0-60^0=30^0\)

Xét ΔCAE có \(\widehat{CAE}=\widehat{CEA}=30^0\)

nên ΔCAE cân tại C

ΔCAE cân tại C

mà CI là đường cao

nên I là trung điểm của AE

Xét tứ giác ACED có

I là trung điểm chung của AE và CD

nên ACED là hình bình hành

mà EC=ED

nên ACED là hình thoi

c: ΔOCE=ΔODE

=>\(\widehat{ODE}=\widehat{OCE}=90^0\)

=>ED là tiếp tuyến của (O)