Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B C A M H D E
a) Xét tam giác ABM và ACM có:
AB = AC (gt)
BM = CM (gt)
Cạnh AM chung
\(\Rightarrow\Delta ABM=\Delta ACM\left(c-c-c\right)\)
b) Ta thấy tam giác MCD có HC là đường cao đồng thời trung tuyến nên ACD là tam giác cân tại C.
Vậy thì CH hay Ca là phân giác góc \(\widehat{MCD}\)
c) Xét tam giác AMC và ADC có:
CM = CD
AC chung
\(\widehat{MCA}=\widehat{DCA}\)
\(\Rightarrow\Delta AMC=\Delta ADC\left(c-g-c\right)\)
\(\Rightarrow\widehat{ADC}=\widehat{AMC}=90^o\) hay \(AD\perp CD\)
Lại có HE // AD nên \(HE\perp CD\)
A B C M N P I H O
a) MP // AC => ^MPB=^CAB; ^PMB=^ACB. Mà ^CAB=^ACB=600
=> ^MPB=^PMB=600 => Tam giác BPM là tam giác đều (đpcm).
b) Tam giác BPM là tam giác đều (cmt) => PM=BP
Ta có: PM//AN; M//AP => PM=AN (Tính chất đoạn chắn)
=> BP=AN.
Tam giác ABC đều và O là trọng tâm nên ta có: ^OBA=^OAC=300 hay ^OBP=^OAN và OB=OA
Xét tam giác OAN và tam giác OBP: BP=AN; OA=OB; ^OAN=^OBP
=> Tam giác OAN= Tam giác OBP (đpcm)
c) Tam giác AIP=Tam giác MIN (g.c.g) => IP=IN hay I là trung điểm của NP
Tam giác OAN=Tam giác OBP (cmt) => ON=OP => O nằm trên trung trực của NP (1)
HP=HN => H nằm trên trung trực của NP (2)
Từ (1) và (2) kết hợp với I là trung điểm của NP => H;I;O thẳng hàng (đpcm).
Xét ΔAID=ΔBIC có:
IA=IB(gt)
IC=ID(gt)
góc AID=góc CIB
Vậy ΔAID=ΔBIC (c-g-c)
=>góc IBC=góc DAB (2 góc tương ứng)
Mà góc IBC và góc DAB là hai góc so le trong
=>AD//BC (dấu hiệu nhận biết)
Vì ΔAID=ΔBIC
=>AD=CB (2 cạnh tương ứng)
Mà M,N lần lượt là trung điểm của AD và BC=>AM=NB
Xét t/g AIM và t/g BIN có :
AI=IB(gt)
NB=AM(cmt)
góc MAI=góc IBN (cmt)
Vậy t/g AIM=t/g BIN (c-g-c)
=>MI=NI (2 cạnh tương ứng)
Vì t/g AIM=t/g BIN =>góc AIM=góc NIB (2 góc tương ứng)
Mà góc AIM+góc AIN=180 độ
=>góc NIB+góc AIN=180 độ
=>M,I,N thẳng hàng
Bạn tự vẽ hình nha!!!
a.)Xét\(\Delta ABD\)và\(\Delta ABM\)có:
\(AD=BM\)
\(AB:\)Chung
\(\widehat{DAB}=\widehat{ABM}\left(slt\right)\)
\(\Rightarrow\Delta ABD=\Delta BAM\)
b.)Ta có:\(\Delta ABD=\Delta BAM\)(Theo a)
\(\Rightarrow\widehat{DBA}=\widehat{BAM}\)(mà 2 góc SLT)
\(\Rightarrow AM//BD\)
c.)Xét\(\Delta ADI\)và\(\Delta IMC\)có:
\(AD=CM\)
\(\widehat{DAI}=\widehat{IMC}\)
\(AI=IM\)
\(\Rightarrow\Delta AID=\Delta IMC\)
\(\Rightarrow IA=IC\)
\(\Rightarrow I\)là trung điểm của\(AC\)
\(\Rightarrow I,A,C\)thẳng hàng(đpcm)
P/s:#Study well#
M N H I O