Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:
Tọa độ đỉnh là:
\(\left\{{}\begin{matrix}x=\dfrac{-6}{2\cdot\left(-1\right)}=\dfrac{6}{2}=3\\y=-\dfrac{6^2-4\cdot\left(-1\right)\cdot\left(-9\right)}{4\cdot\left(-1\right)}=0\end{matrix}\right.\)
=>Hàm số đồng biến khi x<3 và nghịch biến khi x>3
b:
Tọa độ đỉnh là I(-2;-4)
=>Hàm số đồng biến khi x>-2 và nghịch biến khi x<-2
a: TXĐ: D=R
Khi \(x\in D\Rightarrow-x\in D\)
\(f\left(-x\right)=-\left(-x\right)^2-2\cdot\left(-x\right)+3\)
\(=-x^2+2x+3\)
\(\Leftrightarrow f\left(-x\right)\ne f\left(x\right)\ne-f\left(x\right)\)
Vậy: Hàm số không chẵn không lẻ
Cái này là xét sự biến thiên: nghịch biến hay đồng biến chứ ạ???
a: Tọa độ đỉnh là:
\(\left\{{}\begin{matrix}x=\dfrac{-6}{2\cdot4}=\dfrac{-6}{8}=\dfrac{-3}{4}\\y=-\dfrac{6^2-4\cdot4\cdot\left(-5\right)}{4\cdot4}=-\dfrac{29}{4}\end{matrix}\right.\)
Bảng biến thiên là:
x | -\(\infty\) -3/4 +\(\infty\) |
y | -\(\infty\) -29/4 +\(\infty\) |
b: Hàm số đồng biến khi x>-3/4; nghịch biến khi x<-3/4
GTNN của hàm số là y=-29/4 khi x=-3/4
a: Tọa độ đỉnh là:
\(\left\{{}\begin{matrix}x=\dfrac{-10}{2\cdot\left(-3\right)}=\dfrac{10}{6}=\dfrac{5}{3}\\y=-\dfrac{10^2-4\cdot\left(-3\right)\cdot\left(-4\right)}{4\cdot\left(-3\right)}=\dfrac{13}{3}\end{matrix}\right.\)
Bảng biến thiên:
x | -\(\infty\) 5/3 +\(\infty\) |
y | +\(\infty\) 13/3 -\(\infty\) |
b: Hàm số đồng biến khi x<5/3; nghịch biến khi x>5/3
Giá trị nhỏ nhất là y=13/3 khi x=5/3
a) Tập xác định D = R
Bảng biến thiên
Đồ thị hàm số
Đồ thị: parabol có đỉnh I(1, -2) với trục đối xứng x = 1
Giao điểm với trục tung là P(0,-1)
Giao điểm với trục hoành A (1-√2, 0) và B((1+√2, 0)
b)
Tập xác định D = R
Đồ thị hàm số
Đồ thị: parabol có đỉnh I \(\left(\dfrac{3}{2},\dfrac{17}{4}\right)\)với trục đối xứng \(x=\dfrac{3}{2}\)
Giao điểm với trục tung là P(0,2)
Giao điểm với trục hoành A \(\left(\dfrac{3-\sqrt{17}}{2},0\right)\) và B\(\left(\dfrac{3+\sqrt{17}}{2},0\right)\)
1.
Vì \(y=\sqrt{2}\) là hàm hằng nên với mọi giá trị của \(x\) thì đều nhận \(\sqrt{2}\) là giá rị của \(y\)
\(\Rightarrow B\)
2. \(D\)
3.
Giải hệ \(\left\{{}\begin{matrix}\dfrac{1}{2}\left(x+2\right)\left(y+3\right)=\dfrac{1}{2}xy+50\\\dfrac{1}{2}\left(x-2\right)\left(y-2\right)=\dfrac{1}{2}xy-32\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=26\\y=8\end{matrix}\right.\)
\(\Rightarrow xy=208\Rightarrow A\)
4.
\(\overrightarrow{AM}.\overrightarrow{AN}=-a^2\)
5.
\(\left[{}\begin{matrix}m=\dfrac{5}{2}\\m=-\dfrac{7}{2}\end{matrix}\right.\)
6. \(C\)
Câu 4: Đáp án
A. \(2a^2\) B.\(a^2\) C.\(\frac{1}{2}a^2\) D.\(\frac{-1}{2}a^2\)
Không có đáp án \(-a^2 \)
câu này cổ hình như mọi người quan tâm nhiều
f(x) = x^2 -4x +3 =(x-1)(x-3)= (x-2)^2 -1 >=-1
|f(x)| <= 1 khi x [1;3]
cắt trục Ox tại 1, 3
đồ thị
(phác thảo không đúng tỷ lệ)