Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Cách vẽ đồ thị hàm số y=x^2 và y=2x-1
b, bằng cách giải PT xác định tọa độ giao điểm 2 đồ thị trên
a) Đồ thị hàm số y = x2 là parabol đi qua 3 điểm O(0; 0); A(1;1); B(-1; 1) ; nhận trục Oy là trục đối xứng
+) Đồ thị hàm số y = 2x -1 là đường thẳng đi qua 2 điểm C(0; -1); D(1/2; 0)
b) Hoành độ giao điểm là nghiệm của phương trình: x2 = 2x - 1 => x2 - 2x + 1 = 0 => (x -1)2 = 0 => x = 1
=> y = 1
Vậy toạ độ giao điểm của hai đồ thị hàm số là điểm (1;1)
b: Vì (d')//(d) nên a=2
Vậy: (d'): y=2x+b
Thay x=1 và y=4 vào (d'), ta được:
b+2=4
hay b=2
Lời giải:
a) Đồ thị của hàm số y = 2x + b cắt trục tung tại điểm có tung độ bằng -3, nghĩa là khi x = 0 thì y = -3, do đó:
-3 = 2.0 + b => b = -3
b) Đồ thị hàm số y = 2x + b đi qua điểm (1; 5), do đó ta có:
5 = 2.1 + b => b = 3
a. để đồ thị đi qua điểm A(-3;15) <=> 15=(3-a).(-3)+a => a=6
vậy a=6 thì đồ thị hàm số đã cho đi qua điểm A(-3;5)
\(a,\Leftrightarrow\left\{{}\begin{matrix}m-1=1\\3-2m\ne-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=2\\m\ne\dfrac{7}{2}\end{matrix}\right.\Leftrightarrow m=2\\ \Leftrightarrow y=x-1\\ b,\text{PT giao Ox và Oy: }y=0\Leftrightarrow x=\dfrac{2m-3}{m-1}\Leftrightarrow OA=\left|\dfrac{2m-3}{m-1}\right|\\ x=0\Leftrightarrow y=3-2m\Leftrightarrow OB=\left|2m-3\right|\\ \text{Gọi H là chân đường cao từ O \rightarrow}\left(d\right)\Leftrightarrow\Leftrightarrow OH=1\\ \text{Áp dụng HTL: }\dfrac{1}{OA^2}+\dfrac{1}{OB^2}=\dfrac{1}{OH^2}=1\\ \Leftrightarrow\dfrac{\left(m-1\right)^2}{\left(2m-3\right)^2}+\dfrac{1}{\left(2m-3\right)^2}=1\\ \Leftrightarrow m^2-2m+2=4m^2-12m+9\\ \Leftrightarrow3m^2-10m+7=0\\ \Leftrightarrow\left[{}\begin{matrix}m=\dfrac{7}{3}\\m=1\end{matrix}\right.\)