Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lý do gì em lại tin 1 cuốn sách có nguồn từ đâu đó hơn là tài liệu chính thống của BGD sử dụng trong đào tạo?
\(y=\dfrac{x+2}{x+1}\Rightarrow y'=\dfrac{-1}{\left(x+1\right)^2}\)
Gọi giao điểm của tiếp tuyến tại M với 2 trục lần lượt là A và B
Do tam giác OAB vuông cân \(\Rightarrow\widehat{ABO}=45^0\)
\(\Rightarrow\) Tiếp tuyến tạo với trục hoành một góc \(45^0\) hoặc \(135^0\)
\(\Rightarrow\) Hệ số góc k của tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}k=tan45^0=1\\k=tan135^0=-1\end{matrix}\right.\)
Gọi \(M\left(x_0;y_0\right)\) \(\Rightarrow y'\left(x_0\right)=k\Rightarrow\left[{}\begin{matrix}\dfrac{-1}{\left(x_0+1\right)^2}=1\left(vô-nghiệm\right)\\\dfrac{-1}{\left(x_0+1\right)^2}=-1\end{matrix}\right.\)
\(\Rightarrow\left(x_0+1\right)^2=1\Rightarrow\left[{}\begin{matrix}x_0=0\Rightarrow y_0=2\\x_0=-2\Rightarrow y_0=0\end{matrix}\right.\)
Có 2 điểm M thỏa mãn: \(\left[{}\begin{matrix}M\left(0;2\right)\\M\left(-2;0\right)\end{matrix}\right.\)
cos2(x + kπ) = cos(2x + k2π) = cos2x, k ∈ Z.
Vậy hàm số y = cos 2x là hàm số chẵn, tuần hoàn, có chu kì là π.
Đồ thị hàm số y = cos2x
Đồ thị hàm số y = |cos2x|
+ Đồ thị hàm số y = sin x.
+ Ta có:
Vậy từ đồ thị hàm số y = sin x ta có thể suy ra đồ thị hàm số y = |sin x| bằng cách:
- Giữ nguyên phần đồ thị nằm phía trên trục hoành (sin x > 0).
- Lấy đối xứng phần đồ thị nằm phía dưới trục hoành qua trục hoành.
Ta được đồ thị hàm số y = |sin x| là phần nét liền hình phía dưới.
Hàm số này có tập xác định là R \ {0}
Từ đồ thị (H.7) dự đoán f(x) liên tục trên các khoảng (−∞;0), (0; +∞) nhưng không liên tục trên R. Thật vậy,
- Với x > 0, f(x) = x − 1 là hàm đa thức nên liên tục trên R do đó liên tục trên (0; +∞)
- Với x < 0, f(x) = 1 – x cũng là hàm đa thức nên liên tục trên R do đó liên tục trên (−∞; 0)
Dễ thấy hàm số gián đoạn tại x = 0 vì
a, Lấy đối xứng tất cả các điểm trên đồ thị y = sinx (trừ gốc tọa độ) qua trục tung ta được đồ thị y = - sinx
b, Giữ nguyên phần đồ thị nằm bên trái Oy.
Bỏ phần đồ thị bên phải
Lấy đối xứng đồ thị nằm bên trái Oy qua Oy
Đồ thị y = sin|x| là hợp của 2 phần ở trên
c, Tịnh tiến độ thị y = sinx theo vecto \(\overrightarrow{u}=\left(1;0\right)\), hay nói dễ hiểu hơn là dịch chuyển đồ thị y = sinx lên trên 1 đơn vị độ dài
ta được đồ thị y = sinx + 1
Hàm số c luôn đồng biến, tức là đạo hàm của nó phải luôn không âm, do đó hàm số b là đạo hàm của hàm số c; hàm số b đồng biến trên khoảng mà hàm số a dương và nghịch biến trên khoảng mà hàm số a âm, do đó hàm số a là đạo hàm của hàm số b.
Vậy hàm số a là hàm gia tốc, hàm số b là hàm vận tốc và hàm số c là hàm vị trí của ô tô.