Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có \(\Delta ADC=\Delta ABE\) (c-g-c) => \(\Rightarrow\widehat{ADC}=\widehat{ABE}\)(2 c t/ứ )
Gọi giao điểm của AB và CD là K
Ta có: \(\widehat{ADK}+\widehat{AKD}+\widehat{DAK}=180^0\) (Đl Py-ta-go)
\(\widehat{BMK}+\widehat{BKM}+\widehat{KBM}=180^0\)(Đl Py-ta-go)
\(\Rightarrow\widehat{BMK}=\widehat{KAD}=60^0\)\(\Rightarrow\widehat{BMC}=120^0\)
Gọi J là trung điểm DM
C/m \(\Delta DJB=\Delta AMB\) rồi c/m được \(\widehat{BMA}=120^0\)
rồi suy ra \(\widehat{AMC}=120^0\) \(\Rightarrow\)\(\widehat{AMB}=\widehat{AMC}=\widebat{BMC}\)
A x y z x' y' t
Bài làm
Vì góc x'Ay' và góc xAy đối đỉnh với nhau.
=> \(\widehat{x'Ay'}=\widehat{xAy}\)
Mà Az là tia phân giác của \(\widehat{xAy}\)
=>\(\widehat{xAz}=\widehat{zAy}\)
Ta có At là tia đối của Az
Mà \(\widehat{x'Ay'}=\widehat{xAy}\)
=> At cũng là tia phân giác của \(\widehat{x'Ay'}\)
\(\Rightarrow\widehat{x'At}=\widehat{y'At}\)
Vậy \(\widehat{x'At}=\widehat{y'At}\)
# Học tốt #
c:\program files\bytefence\cache\sr070511a9fbcf0cb7d3217a7ba70747741de3f972
O y x n t m
a)
Theo đề ra, ta có:
\(\widehat{xOn}+\widehat{nOm}=\widehat{xOm}\)
\(\widehat{yOm}+\widehat{nOm}=\widehat{yOn}\)
Ta có \(\widehat{xOm}=\widehat{yOn}=90^o\Rightarrow\widehat{xOn}=\widehat{yOm}\)
b)
Theo đề ra, ta có: Ot là tia phân giác của \(\widehat{xOy}\Rightarrow\widehat{xOt}=\widehat{yOt}=\widehat{xOy}:2\)
Ta có:
\(\widehat{xOn}+\widehat{nOt}=\widehat{xOt}\)
\(\widehat{yOm}+\widehat{mOt}=\widehat{yOt}\)
Mà \(\widehat{xOt}=\widehat{yOt}\)và\(\widehat{xOn}=\widehat{yOm}\)
\(\Rightarrow\widehat{nOt}=\widehat{mOt}\)
Vậy Ot là tia phân giác của \(\widehat{mOn}\)
(a) Do tia On nằm giữa 2 tia Ox và Oy nên ta có ˆxOy=ˆxOn+ˆnOyxOy^=xOn^+nOy^
⇒ˆxOn=ˆxOy−900⇒xOn^=xOy^−900 hay ˆxOnxOn^ nhọn
⇒ˆxOn<ˆxOm⇒xOn^<xOm^ mà 2 tia Om và On cùng thuộc nửa mặt phẳng bờ Ox chứa Oy nên tia On nằm giữa tia Ox và tia Oy
⇒ˆxOn+ˆmOn=ˆxOm=900⇒xOn^+mOn^=xOm^=900
Tương tự ta có ˆyOm+ˆmOn=900yOm^+mOn^=900. Do đó ˆxOn=ˆyOmxOn^=yOm^ (đpcm).
(b) Ta có: ˆxOn=ˆxOy−900=12ˆxOy+ˆxOy−18002<ˆxOy2=ˆxOt<900=ˆxOmxOn^=xOy^−900=12xOy^+xOy^−18002<xOy^2=xOt^<900=xOm^Mà Om, On, Ot cùng thuộc nửa mặt phẳng bờ Ox chứa Oy nên tia Ot nằm giữa 2 tia Om và On.
⇒⇒ ˆnOt=ˆxOt−ˆxOn=ˆyOt−ˆyOm=ˆtOmnOt^=xOt^−xOn^=yOt^−yOm^=tOm^ hay Ot là phân giác ˆmOnmOn^
I don't now
or no I don't
..................
sorry
Ta có: \(\widehat{xAz}=\widehat{B}\left(gt\right)\)
Mà 2 góc này nằm ở vị trí đồng vị.
=> \(Az\) // \(BC.\)
=> \(\widehat{C}=\widehat{CAz}\) (vì 2 góc so le trong)
Vì \(Az\) là tia phân giác của \(\widehat{xAC}\left(gt\right)\)
=> \(\widehat{CAz}=\widehat{xAz}\)
Mà \(\left\{{}\begin{matrix}\widehat{B}=\widehat{xAz}\left(gt\right)\\\widehat{C}=\widehat{CAz}\left(cmt\right)\end{matrix}\right.\)
=> \(\widehat{B}=\widehat{C}\left(đpcm\right).\)
Chúc bạn học tốt!
Tự vẽ hình
Ta có: \(\widehat{xAz} =\widehat{B}\) (gt)xAz^=B^(gt)
Mà 2 góc này nằm ở vị trí đồng vị.
=> AzAz // BC.BC.
=> ˆ\(\widehat{C} =\widehat{CAz}\)
C^=CAz^ (vì 2 góc so le trong)
Vì AzAz là tia phân giác của\(\widehat{xAC}\)( gt)xAC^(gt)
=>\(\widehat{CAz} =\widehat{xAz}\)
Mà {ˆB=ˆxAz(gt)ˆC=ˆCAz(cmt){B^=xAz^(gt)C^=CAz^(cmt)
=> ˆB=ˆC(đpcm).