K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2021

a) Xét tam giác ABC vuông tại A có:

\(BC^2=AB^2+AC^2\left(Pytago\right)\)

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{9^2+12^2}=15\left(cm\right)\)

Áp dụng HTL:

\(AB^2=BH.BC\)

\(\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{9^2}{15}=5,4\left(cm\right)\)

b) Xét tam giác ABC và tam giác HBA có:

\(\widehat{B}\) chung

\(\widehat{BAC}=\widehat{AHB}=90^0\)

\(\Rightarrow\Delta ABC\sim\Delta HBA\left(g.g\right)\)

c) Xét tam giác ABC vuông tại A có:

AD là trung tuyến

\(\Rightarrow AD=BD=\dfrac{1}{2}BC=\dfrac{1}{2}.15=7,5\left(cm\right)\)

28 tháng 9 2021

 b làm sai r đề là ad phân giác mà b ghi trung tuyến

a: \(AH=\dfrac{9\cdot12}{15}=7.2\left(cm\right)\)

CH=5,4(cm)

NV
1 tháng 11 2021

undefined

Bài 1:

a: Xét ΔBAC vuông tại A có 

\(\widehat{B}+\widehat{C}=90^0\)

hay \(\widehat{C}=60^0\)

Xét ΔBAC vuông tại A có 

\(AB=BC\cdot\sin60^0\)

\(\Leftrightarrow BC=4\sqrt{3}\left(cm\right)\)

\(\Leftrightarrow AC=2\sqrt{3}\left(cm\right)\)

a: Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AB^2=81\)

hay AB=9cm

Xét ΔABC vuông tại A có 

\(\sin\widehat{C}=\dfrac{3}{5}\)

nên \(\widehat{C}\simeq37^0\)

hay \(\widehat{B}=53^0\)

17 tháng 8 2021

Chị ơi còn câu b ?

 

3 tháng 10 2021

\(a,AB=\sqrt{BC^2-AC^2}=9\left(cm\right)\)

\(b,\)Áp dụng HTL:

\(AH\cdot BC=AC\cdot AB\\ \Rightarrow AH=\dfrac{12\cdot9}{15}=7,2\left(cm\right)\)

Vì AD là p/g nên \(\dfrac{AB}{AC}=\dfrac{BD}{DC}=\dfrac{3}{4}\Rightarrow BD=\dfrac{3}{4}DC\)

Mà \(BD+DC=BC=15\Rightarrow\dfrac{5}{4}DC=15\Rightarrow DC=12\left(cm\right)\)

Áp dụng HTL: \(HC=\dfrac{AC^2}{BC}=9,6\left(cm\right)\)

\(\Rightarrow HD=CD-HC=2,4\left(cm\right)\)

Áp dụng pytago: \(AD=\sqrt{AH^2+DH^2}=\dfrac{12\sqrt{10}}{5}\left(cm\right)\)

12 tháng 11 2021

a: \(\widehat{C}=30^0\)

AB=4cm

\(AC=4\sqrt{3}\left(cm\right)\)

Xét ΔABC có 

AD là đường phân giác ứng với cạnh BC

nên \(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)

\(\Leftrightarrow\dfrac{AB}{AC}=\dfrac{4}{5}\)

\(\Leftrightarrow AB=\dfrac{4}{5}AC\)

Ta có: BC=BD+CD

nên BC=4+5

hay BC=9cm

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC^2\cdot\dfrac{41}{25}=9\)

\(\Leftrightarrow AC^2=\dfrac{225}{41}\)

\(\Leftrightarrow AC=\dfrac{15\sqrt{41}}{41}\left(cm\right)\)

\(\Leftrightarrow AB=\dfrac{12\sqrt{41}}{41}\left(cm\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{16}{41}\left(cm\right)\\CH=\dfrac{353}{41}\left(cm\right)\\AH=\dfrac{4\sqrt{353}}{41}\left(cm\right)\end{matrix}\right.\)