Vẽ các đường thẳng sau trên cùng 1 hệ trục tọa độ,sau đó tính khoảng cách từ gốc O...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a:

Vẽ đường thẳng y=-3x-3

loading...

y=-3-3x

=>3x+y+3=0

Khoảng cách từ O đến đường thẳng y=-3x-3 là:

\(\dfrac{\left|0\cdot3+0\cdot1+3\right|}{\sqrt{3^2+1^2}}=\dfrac{3}{\sqrt{10}}\)

b:

Vẽ đường thẳng y=x

loading...

y=x

=>x-y=0

Khoảng cách từ O(0;0) đến đường thẳng y=x là:

\(\dfrac{\left|0\cdot1+0\cdot\left(-1\right)+0\right|}{\sqrt{1^2+\left(-1\right)^2}}=\dfrac{0}{\sqrt{2}}=0\)

c:

Vẽ đồ thị y=-x

loading...

y=-x

=>x+y=0

Khoảng cách từ O(0;0) đến đường thẳng y=-x là:

\(\dfrac{\left|0\cdot1+0\cdot1+0\right|}{\sqrt{1^2+1^2}}=0\)

d:

Vẽ đồ thị hàm số y=1/2x

loading...

y=1/2x

=>1/2x-y=0

Khoảng cách từ O(0;0) đến đường thẳng y=1/2x là:

\(\dfrac{\left|0\cdot\dfrac{1}{2}+0\cdot\left(-1\right)+0\right|}{\sqrt{\left(\dfrac{1}{2}\right)^2+\left(-1\right)^2}}=\dfrac{0}{\sqrt{\dfrac{1}{4}+1}}=0\)

a:

Vẽ đồ thị y=2-x

loading...

y=2-x

=>y+x-2=0

=>x+y-2=0

Khoảng cách từ O đến đường thẳng x+y-2=0 là:

\(d\left(O;x+y-2=0\right)=\dfrac{\left|0\cdot1+0\cdot1-2\right|}{\sqrt{1^2+1^2}}\)

\(=\dfrac{2}{\sqrt{1+1}}=\dfrac{2}{\sqrt{2}}=\sqrt{2}\)

b:

Vẽ đồ thị y=2x+1

loading...

y=2x+1

=>2x-y+1=0

Khoảng cách từ O(0;0) đến đường thẳng y=2x+1 là:

\(\dfrac{\left|0\cdot2+0\cdot\left(-1\right)+1\right|}{\sqrt{2^2+\left(-1\right)^2}}=\dfrac{1}{\sqrt{4+1}}=\dfrac{\sqrt{5}}{5}\)

c: 

Vẽ đồ thị \(y=\dfrac{x-2}{2}\)

loading...

\(y=\dfrac{x-2}{2}\)

=>x-2=2y

=>x-2y-2=0

Khoảng cách từ O(0;0) đến đường thẳng \(y=\dfrac{x-2}{2}\) là:

\(\dfrac{\left|0\cdot1+0\cdot\left(-2\right)-2\right|}{\sqrt{1^2+\left(-2\right)^2}}=\dfrac{\left|-2\right|}{\sqrt{1+4}}=\dfrac{2}{\sqrt{5}}\)

d:

Vẽ đồ thị y=-2x

loading...

y=-2x

=>-2x+y=0

Khoảng cách từ O(0;0) đến đường thẳng y=-2x là:

\(\dfrac{\left|0\cdot\left(-2\right)+0\cdot1+0\right|}{\sqrt{\left(-2\right)^2+1^2}}=\dfrac{0}{\sqrt{\left(-2\right)^2+1^2}}=0\)

a: Tọa độ giao điểm là:

\(\left\{{}\begin{matrix}2x=1-3x\\y=2x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x=1\\y=2x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{5}\\y=\dfrac{2}{5}\end{matrix}\right.\)

b: Thay x=1/5 và y=2/5 vào y=kx+1, ta được:

1/5k+1=2/5

=>1/5k=-3/5

hay k=-3

Bài 1: 

a: \(A=\dfrac{x^4+x^3+x+1}{x^4-x^3+2x^2-x+1}=\dfrac{x^3\left(x+1\right)+\left(x+1\right)}{x^4-x^3+x^2+x^2-x+1}\)

\(=\dfrac{\left(x+1\right)\left(x^3+1\right)}{\left(x^2-x+1\right)\left(x^2+1\right)}=\dfrac{\left(x+1\right)^2}{x^2+1}\)

Để A=0 thì x+1=0

hay x=-1

b: \(B=\dfrac{x^4-5x^2+4}{x^4-10x^2+9}=\dfrac{\left(x^2-1\right)\left(x^2-4\right)}{\left(x^2-1\right)\left(x^2-9\right)}=\dfrac{x^2-4}{x^2-9}\)

Để B=0 thi (x-2)(x+2)=0

=>x=2 hoặc x=-2

Bài 1: Đa thức bậc 4 có hệ số bậc cao nhất là 1 và thoả mãn f(1) = 5; f(2) =11; f(3) = 21. Tính f(-1) + f(5).Bài 2: Một người đi một nữa quãng đường từ A đến B với vận tốc 15km/h, và đi phần còn lại với vận tốc 30km/h. Tính vận tốc trung bình của người đó trên toàn bộ quãng đường AB.Bài 3: Chứng minh rằng : S ≤\(\frac{a^2+b^2}{4}\) với S là diện tích của tam giác có độ dài hai cạnh bằng...
Đọc tiếp

Bài 1: 

Đa thức bậc 4 có hệ số bậc cao nhất là 1 và thoả mãn f(1) = 5; f(2) =11; f(3) = 21. Tính f(-1) + f(5).
Bài 2:

 Một người đi một nữa quãng đường từ A đến B với vận tốc 15km/h, và đi phần còn lại với vận tốc 30km/h. Tính vận tốc trung bình của người đó trên toàn bộ quãng đường AB.
Bài 3:

 Chứng minh rằng : S ≤\(\frac{a^2+b^2}{4}\) với S là diện tích của tam giác có độ dài hai cạnh bằng a, b.
Bài 4: 
a)Tìm tất cả các số nguyên n sao cho :\(n^4+2n^3+2n^2+n+7\) là số chính phương.
b)Tìm nghiệm nguyên của của phương trình:x2+xy+y2=x2y2
Bài 7:

 Chứng minh rằng : (x-1)(x-3)(x-4)(x-6) + 10 > 0   \(\forall x\)
Bài 8:

 Cho x≥0, y≥0, z≥0 và x+y+z=1. Chứng minh rằng:\(xy+yz+zx-2xyz\le\frac{7}{27}\)
Bài 9: Cho biểu thức:
P=\(\left(\frac{2x-3}{4x^2-12x+5}+\frac{2x-8}{13x-2x^2-20}-\frac{3}{2x-1}\right):\frac{21+2x-8x^2}{4x^2+4x-3}+1\)
a) Rút gọn P
b) Tính giá trị của P khi |x|=\(\frac{1}{2}\)
c) Tìm giá trị nguyên của x để P nhận giá trị nguyên.
d) Tìm x để P>0
Bài 10: 

Một người đi xe gắn máy từ A đến B dự định mất 3 giờ 20 phút. Nếu người ấy tăng vận tốc thêm 5 km/h thì sẽ đến B sớm hơn 20 phút. Tính khoảng cách AB và vận tốc dự định đi của người đó.
Bài 11: Cho x, y, z là các số lớn hơn hoặc bằng 1. Chứng minh rằng:
\(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\)
Bài 11: Cho biểu thức: 

\(A=\left[\frac{2}{3x}+\frac{2}{x+1}\left(\frac{x+1}{3x}-x-1\right)\right]:\frac{x-1}{x}\)
a) Rút gọn biểu thức A
b) Tìm giá trị nguyên của x để A nhận giá trị nguyên.

0
5 tháng 12 2017

Đăng ít thôi.

5 tháng 12 2017

~ bt làm hăm giúp mình câu 2+3

5A. Vẽ đồ thị của các hàm số sau:a) \(y = x + 3\)b) \(y = 2 x - 5\)c) \(y = - 1 , 5 x\)5B. Vẽ đồ thị của các hàm số sau:a) \(y = x - 2\)b) \(y = - 2 x + 4\)c) \(y = \frac{2}{3} x\)6A. Trong các điểm sau, điểm nào thuộc đồ thị hàm số \(y = 3 x - 6\)?\(A \left(\right. 0 ; - 6 \left.\right) ; B \left(\right. - 1 ; - 3 \left.\right) ; C \left(\right. - 2 ; 0 \left.\right) ; D \left(\right. 1 ; - 3 \left.\right)\).6B. Trong các điểm sau, điểm nào...
Đọc tiếp

5A. Vẽ đồ thị của các hàm số sau:

a) \(y = x + 3\)
b) \(y = 2 x - 5\)
c) \(y = - 1 , 5 x\)


5B. Vẽ đồ thị của các hàm số sau:

a) \(y = x - 2\)
b) \(y = - 2 x + 4\)
c) \(y = \frac{2}{3} x\)


6A. Trong các điểm sau, điểm nào thuộc đồ thị hàm số \(y = 3 x - 6\)?

\(A \left(\right. 0 ; - 6 \left.\right) ; B \left(\right. - 1 ; - 3 \left.\right) ; C \left(\right. - 2 ; 0 \left.\right) ; D \left(\right. 1 ; - 3 \left.\right)\).


6B. Trong các điểm sau, điểm nào thuộc đồ thị hàm số \(y = - 2 x + 8\)?

\(M \left(\right. 2 ; 4 \left.\right) ; N \left(\right. 4 ; 0 \left.\right) ; P \left(\right. - 2 ; 4 \left.\right) ; Q \left(\right. 8 ; 0 \left.\right)\).


1A. Xác định hệ số góc của mỗi đường thẳng sau:

a) \(y = 4 x + 1\)
b) \(y = 3 - 1 , 5 x\)
c) \(y = \frac{3}{4} \left(\right. x + 4 \left.\right)\)
d) \(y = \frac{- 2 x + 3}{2}\)


1B. Xác định hệ số góc của mỗi đường thẳng sau:

a) \(y = - 5 x + 7\)
b) \(y = 1 - x\)
c) \(y = 0 , 3 \left(\right. x - 10 \left.\right)\)
d) \(y = \frac{6 x + 1}{3}\)

1

6A: Thay x=0 vào y=3x-6, ta được:

\(y=3\cdot0-6=0-6=-6\)

=>A(0;-6) thuộc đồ thị hàm số y=3x-6

Thay x=-1 vào y=3x-6, ta được:

\(y=3\cdot\left(-1\right)-6=-3-6=-9\) <>-3

=>B(-1;-3) không thuộc đồ thị hàm số y=3x-6

Thay x=-2 vào y=3x-6, ta được:

\(y=3\cdot\left(-2\right)-6=-6-6=-12\) <>0

=>C(-2;0) không thuộc đồ thị hàm số y=3x-6

Thay x=1 vào y=3x-6, ta được:

\(y=3\cdot1-6=3-6=-3\)

=>D(1;-3) thuộc đồ thị hàm số y=3x-6

6B:

Thay x=2 vào y=-2x+8, ta được:

\(y=-2\cdot2+8=-4+8=4\)

=>M(2;4) thuộc đồ thị hàm số y=-2x+8

Thay x=4 vào y=-2x+8, ta được:

\(y=-2\cdot4+8=-8+8=0\)

=>N(4;0) thuộc đồ thị hàm số y=-2x+8

Thay x=-2 vào y=-2x+8, ta được:
\(y=\left(-2\right)\cdot\left(-2\right)+8=4+8=12\) <>4

=>P(-2;4) không thuộc đồ thị hàm số y=-2x+8

Thay x=8 vào y=-2x+8, ta được:

\(y=-2\cdot8+8=-16+8=-8\) <>0

=>Q(8;0) không thuộc đồ thị hàm số y=-2x+8

1A:

a: y=4x+1 nên hệ số góc là a=4

b: y=3-1,5x nên hệ số góc là a=-1,5

c: \(y=\frac34\left(x+4\right)=\frac34x+3\)

=>Hệ số góc là \(a=\frac34\)

d: \(y=\frac{-2x+3}{2}=-x+\frac32\)

=>Hệ số góc là -1

1B:

a: y=-5x+7

=>Hệ số góc là a=-5

b: y=1-x=-x+1

=>Hệ số góc là a=-1

c: y=0,3(x-10)=0,3x-3

=>Hệ số góc là a=0,3

d: \(y=\frac{6x+1}{3}=2x+\frac13\)

=>Hệ số góc là a=2

5A:
a: y=x+3

Bảng giá trị:

x

0

1

y=x+3

3

4

Vẽ đồ thị:

b: y=2x-5

Bảng giá trị

x

0

1

y=2x-5

-5

-3

Vẽ đồ thị

c: y=-1,5x

Bảng giá trị:

x

0

2

y=-1,5x

0

-3

Vẽ đồ thị:

5B:

a: y=x-2

Bảng giá trị:

x

0

1

y=x-2

-2

-1

Bảng giá trị:

b: y=-2x+4

x

0

1

y=-2x+4

4

2

Vẽ đồ thị

c: \(y=\frac23x\)

Bảng giá trị:

x

0

3

y=\(\frac23\) x

0

2

Vẽ đồ thị:

12 tháng 11 2023

Thay x=2 và y=6 vào (d), ta được:

2(m+2)+2m-6=6

=>4m+4+2m-6=6

=>6m-2=6

=>6m=8

=>\(m=\dfrac{4}{3}\)

Khi m=4/3 thì (d): \(y=\left(\dfrac{4}{3}+2\right)x+2\cdot\dfrac{4}{3}-6=\dfrac{10}{3}x-\dfrac{10}{3}\)

Gọi A(x,y) và B(x,y) lần lượt là giao điểm của (d) với trục Ox và Oy

Tọa độ A là:

\(\left\{{}\begin{matrix}y=0\\\dfrac{10}{3}x-\dfrac{10}{3}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\\dfrac{10}{3}x=\dfrac{10}{3}\end{matrix}\right.\)

=>x=1 và y=0

=>A(1;0)

Tọa độ B là:

\(\left\{{}\begin{matrix}x=0\\y=\dfrac{10}{3}\cdot0-\dfrac{10}{3}=-\dfrac{10}{3}\end{matrix}\right.\)

=>\(B\left(0;-\dfrac{10}{3}\right)\)

O(0;0); A(1;0); B(0;-10/3)

=>\(OA=\sqrt{\left(1-0\right)^2+\left(0-0\right)^2}=1\)

\(OB=\sqrt{\left(0-0\right)^2+\left(-\dfrac{10}{3}-0\right)^2}=\dfrac{10}{3}\)

\(AB=\sqrt{\left(0-1\right)^2+\left(-\dfrac{10}{3}-0\right)^2}=\dfrac{\sqrt{109}}{3}\)

Vì \(OA^2+OB^2=AB^2\)

nên ΔOAB vuông tại O

Kẻ OH vuông góc AB tại H

=>OH là khoảng cách từ O đến (d)

Xét ΔOAB vuông tại O có OH là đường cao

nên \(OH\cdot AB=OA\cdot OB\)

\(\Leftrightarrow OH\cdot\dfrac{\sqrt{109}}{3}=1\cdot\dfrac{10}{3}\)

=>\(OH=\dfrac{10}{\sqrt{109}}\)

=>\(d\left(O;\left(d\right)\right)=\dfrac{10}{\sqrt{109}}\)

28 tháng 6 2017

Tính chất cơ bản của phân thức

Tính chất cơ bản của phân thức

29 tháng 10 2017

Tính chất cơ bản của phân thức