Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,A=2\left(x^2+2x\right)-x^2\left(x+2\right)+x^3-4x+3\)
\(=2x^2+4x-x^3-2x^2+x^3-4x+3\)
\(=3\)
Vậy biểu thức thức trên không phụ thuộc vào giá trị của biến
\(b,B=2y\left(y^2+y+1\right)-2y^2\left(y+1\right)-2\left(y+10\right)\)
\(=2y^3+2y^2+2y-2y^3-2y^2-2y+10\)
\(=10\)
Vậy biểu thức thức trên không phụ thuộc vào giá trị của biến
\(c,D=x\left(x^2+x+1\right)-x^2\left(x+1\right)-x+5\)
\(=x^3+x^2+x-x^3-x^2-x+5\)
\(=5\)
Vậy biểu thức thức trên không phụ thuộc vào giá trị của biến
\(d,E=x\left(2x-3\right)+2x^2\left(x-2\right)-2x\left(x^2-x+1\right)+5\left(x-1\right)\)
\(=2x^2-3x+2x^3-4x^2-2x^3+2x^2-2x+5x-5\)
\(=-5\)
Vậy biểu thức thức trên không phụ thuộc vào giá trị của biến
a: Xét ΔABD và ΔAMD có
AB=AM
\(\widehat{BAD}=\widehat{MAD}\)
AD chung
Do đó: ΔABD=ΔAMD
b: Ta có: ΔABD=ΔAMD
=>DB=DM
=>ΔDBM cân tại D
c: Ta có: AB=AM
=>A nằm trên đường trung trực của BM(1)
Ta có: DB=DM
=>D nằm trên đường trung trực của BM(2)
Từ (1) và (2) suy ra AD là đường trung trực của BM
Do A thuộc trung trực đoạn MN nên \(AM=AN\)
Do B thuộc trung trực đoạn MN nên \(BM=BN\)
Xét 2 tam giác MAB và NAB có:
\(\left\{{}\begin{matrix}AM=AN\left(cmt\right)\\BM=BN\left(cmt\right)\\AB\text{ chung}\end{matrix}\right.\)
\(\Rightarrow\Delta MAB=\Delta NAB\left(c.c.c\right)\)
Bài 9:
a: Xét ΔABC có DE//BC
nên AD/AB=AE/AC
mà AB=AC
nên AD=AE
hay ΔADE cân tại A
b: Xét ΔDBC và ΔECB có
DB=EC
\(\widehat{DBC}=\widehat{ECB}\)
BC chung
Do đó: ΔDBC=ΔECB
Suy ra: \(\widehat{OCB}=\widehat{OBC}\)
hay ΔOBC cân tại O
Lời giải:
Vì $B,D$ đối xứng với nhau qua $AC$ nên $AC$ chính là trung trực của $BD$
$\Rightarrow AB=AD; CB=CD$. Mà $ABC$ là tam giác cân tại $B$ nên $AB=BC$
$\Rightarrow AB=BC=AD=CD$
Xét tam giác $ABD$ và $CBD$ có:
$AB=CB$ (cmt)
$BD$ chung
$AD=CD$ (cmt)
$\Rightarrow \triangle ABD=\triangle CBD$ (c.c.c)
Câu 3:
a: \(BD=\sqrt{BC^2-DC^2}=4\left(cm\right)\)
b: \(\widehat{A}=180^0-2\cdot70^0=40^0< \widehat{B}\)
nên BC<AC=AB
c: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có
BC chung
\(\widehat{EBC}=\widehat{DCB}\)
Do đó:ΔEBC=ΔDCB
d: Xét ΔOBC có \(\widehat{OBC}=\widehat{OCB}\)
nên ΔOBC cân tại O
Câu 2
a) Thay y = -2 vào biểu thức đã cho ta được:
2.(-2) + 3 = -1
Vậy giá trị của biểu thức đã cho tại y = -2 là -1
b) Thay x = -5 vào biểu thức đã cho ta được:
2.[(-5)² - 5] = 2.(25 - 5) = 2.20 = 40
Vậy giá trị của biểu thức đã cho tại x = -5 là 40
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
=>AD=ED
b: Xét ΔBEF vuông tại E và ΔBAC vuông tại A có
BE=BA
góc EBF chung
=>ΔBEF=ΔBAC
=>BF=BC
2BF=BF+BC>FC
a) Xét \(\Delta ABC\) và \(\Delta ADE\) có:
\(\widehat{EAD}=\widehat{BAC}\) (2 góc đối đỉnh)
\(AE=AC\) (A là trung điểm của CE)
\(AD=AB\) (A là trung điểm của BD)
\(\Rightarrow\Delta ABC=\Delta ADE\left(c-g-c\right)\)
b) Do \(\Delta ABC=\Delta ADE\) nên:
\(\widehat{ABC}=\widehat{EDA}\) (2 góc tương ứng)
\(\Rightarrow DE//BC\) (Do \(\widehat{ABC}\) và \(\widehat{EDA}\) là 2 góc so le trong)