K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2021

b: Xét tứ giác ADHE có

\(\widehat{ADH}=\widehat{AEH}=\widehat{EAD}=90^0\)

Do đó: ADHE là hình chữ nhật

25 tháng 11 2018

Thiếu dữ kiện hình chữ nhật

Tính diện tích hình thoi

Gọi O là giao điểm của hai đường chéo .

BD = 8cm  => BO= 4 cm  ( vì ABCD là hình thoi  )

Có  AB = 5 cm  ( gt ) và  \(BD\perp AC\) ( vì ABCD là hình thoi)

Áp dụng định lí Py-ta-go cho tam giác vuông AOB ta có :

\(AB^2=BO^2+AO^2\)

\(\Rightarrow5^2=4^2+AO^2\)

\(\Rightarrow AO^2=25+16\)

\(\Rightarrow AO=\sqrt{41}\)

\(\Rightarrow AC=\sqrt{41}^2=41\)

\(\Rightarrow S_{ABCD}=\frac{1}{2}.41.8=164\left(cm^2\right)\)

25 tháng 11 2018

A B C D O 5

22 tháng 10 2023

a: Xét tứ giác AECF có

AE//CF(AB//CD)

AE=CF

Do đó: AECF là hình bình hành

b: AE+EB=AB

CF+FD=CD

mà AE=CF và AB=CD

nên BE=DF

Xét tứ giác BEDF có

BE//DF

BE=DF

Do đó: BEDF là hình bình hành

=>DE=BF

c:

ABCD là hình bình hành

=>AC cắt BD tại trung điểm của mỗi đường

=>O là trung điểm chung của AC và BD

Xét ΔAIC có

D,O lần lượt là trung điểm của AI,AC

=>DO là đường trung bình

=>DO//CI

d: AECF là hình bình hành

=>AC cắt EF tại trung điểm của mỗi đường

mà O là trung điểm của AC

nên O là trung điểm của EF

=>AC,EF,BD đồng quy(do cùng đi qua O)

30 tháng 10 2023

loading...  loading...  loading...  loading...  loading...  

13 tháng 12 2021

\(a,\dfrac{11x}{2x-5}+\dfrac{x-30}{2x-5}=\dfrac{11x+x-30}{2x-5}=\dfrac{12x-30}{2x-5}=\dfrac{6\left(2x-5\right)}{2x-5}=6\)

\(b,\dfrac{3x^2-1}{2x}+\dfrac{x^2+1}{2x}=\dfrac{3x^2-1+x^2+1}{2x}=\dfrac{4x^2}{2x}=2x\)

\(c,\dfrac{3}{2x-5}+\dfrac{-2}{2x+5}+\dfrac{-20}{4x^2-25}=\dfrac{3\left(2x+5\right)}{\left(2x-5\right)\left(2x+5\right)}-\dfrac{2\left(2x-5\right)}{\left(2x-5\right)\left(2x+5\right)}-\dfrac{20}{\left(2x-5\right)\left(2x+5\right)}=\dfrac{6x+15-4x+10-20}{\left(2x-5\right)\left(2x+5\right)}=\dfrac{2x+5}{\left(2x-5\right)\left(2x+5\right)}=\dfrac{1}{2x-5}\)

\(d,\dfrac{x-2}{x-1}+\dfrac{x-3}{x+1}+\dfrac{4-2x^2}{x^2-1}=\dfrac{\left(x-2\right)\left(x+1\right)+\left(x-3\right)\left(x-1\right)+4-2x^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{x^2-2x+x-2+x^2-3x-x+3+4-2x^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{-5x+5}{\left(x-1\right)\left(x+1\right)}=\dfrac{-5\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{-5}{x-1}\)

\(e,\dfrac{x+1}{x-1}+\dfrac{1-x}{x+1}+\dfrac{4}{x^2-1}=\dfrac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}+\dfrac{4}{\left(x-1\right)\left(x+1\right)}=\dfrac{x^2+2x+1-x^2+2x-1+4}{\left(x-1\right)\left(x+1\right)}=\dfrac{4x+4}{\left(x-1\right)\left(x+1\right)}=\dfrac{4\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{4}{x-1}\)

NV
20 tháng 1 2022

\(\Leftrightarrow18x^2\left(x+4\right)-12x\left(x+4\right)=0\)

\(\Leftrightarrow6x\left(x+4\right)\left[3x-2\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+4=0\\3x-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-4\\x=\dfrac{2}{3}\end{matrix}\right.\)

20 tháng 1 2022

⇔18x2(x+4)−12x(x+4)=0⇔18x2(x+4)−12x(x+4)=0

⇔6x(x+4)[3x−2]=0⇔6x(x+4)[3x−2]=0

⇔⎡⎢⎣x=0x+4=03x−2=0⇔[x=0x+4=03x−2=0

⇔⎡⎢ ⎢ ⎢⎣x=0x=−4x=23

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

=>AB/HB=AC/HA

=>AB*HA=HB*AC

b: AH=căn 5^2-3^2=4cm

BI là phân giác

=>HI/HB=IA/AB

=>HI/3=IA/5=(HI+IA)/(3+5)=0,5

=>HI=1,5cm; IA=1,5cm

Bài 2: 

a: Xét ΔABC có

X là trung điểm của BC

Y là trung điểm của AB

Do đó: XY là đường trung bình

=>XY//AC và XY=AC/2=3,5(cm)

hay XZ//AC và XZ=AC

b: Xét tứ giác AZBX có 

Y là trung điểm của AB

Y là trung điểm của ZX

Do đó: AZBX là hình bình hành

mà \(\widehat{AXB}=90^0\)

nên AZBX là hình chữ nhật

d: Xét tứ giác AZXC có

XZ//AC

XZ=AC

Do đó: AZXC là hình bình hành