K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2019

\(VD1\)

Giả sử \(x\le y\Rightarrow\sqrt{x}\le\sqrt{y}\)

\(\Rightarrow2\sqrt{x}\le\sqrt{x}+\sqrt{y}=9\)

\(\Rightarrow\sqrt{x}\le4,5\)

\(\Rightarrow x\le4,5^2\)

\(\Rightarrow x\le20,25\)

\(\Rightarrow x\in\left\{0,1,4,9,16\right\}\)

\(\Rightarrow\sqrt{x}\in\left\{0,1,2,3,4\right\}\)

TH1 : \(x=0\Rightarrow\sqrt{x}=0\Rightarrow\sqrt{y}=9\Rightarrow y=81\)

TH2 : \(x=1\Rightarrow\sqrt{x}=1\Rightarrow\sqrt{y}=8\Rightarrow y=64\)

Th3 : \(x=4\Rightarrow\sqrt{x}=2\Rightarrow\sqrt{y}=7\Rightarrow y=49\)

Th4 : \(x=9\Rightarrow\sqrt{x}=3\Rightarrow\sqrt{y}=6\Rightarrow y=36\)

Th5 : \(x=16\Rightarrow\sqrt{x}=4\Rightarrow\sqrt{y}=5\Rightarrow y=25\)

Vì x , y có vai trò như nhau nên các trường hợp còn lại chỉ là đổi chỗ giữa x và y . ( vd y = 0 thì x = 81 )

KL....
 

15 tháng 6 2019

VD2: Ta có:

x+y+z=xyz ( 1 )

Chia 2 vế của ( 1 ) cho xyz\(\ne\)0 ta đc:

\(\frac{1}{yz}+\frac{1}{xz}+\frac{1}{xy}=1\)

Giả sử \(x\ge y\ge z\ge1\)thì ta có:

\(1=\frac{1}{yz}+\frac{1}{xz}+\frac{1}{xy}\le\frac{1}{z^2}+\frac{1}{z^2}+\frac{1}{z^2}=\frac{3}{z^2}\)

\(\Rightarrow1\le\frac{3}{z^2}\Rightarrow z^2\le3\Leftrightarrow z=1\)

Thay z=1 vào ( 1 ) ta đc:

x+y+1=xy

\(\Leftrightarrow\)xy -x - y = 1

\(\Leftrightarrow\)x ( y - 1 ) - ( y - 1 ) = 2

\(\Leftrightarrow\)( x - 1 ) ( y - 1 ) =2

Mà \(x-1\ge y-1\)nên \(\hept{\begin{cases}x-1=2\\y-1=1\end{cases}\Rightarrow\hept{\begin{cases}x=3\\y=2\end{cases}}}\)

Vậy nghiệm dương của phương trình là các hoán vị của 1, 2, 3

\(x;y\in N^{\cdot}\Leftrightarrow\hept{\begin{cases}\frac{1}{x}\le1\\\frac{1}{y}\le1\end{cases}}\)

\(\Leftrightarrow z=\frac{1}{x}+\frac{1}{y}\le2\)

\(z=2\Leftrightarrow x=y=1\)( dấu = xảy ra)

\(+z=1\Leftrightarrow1=\frac{1}{x}+\frac{1}{y}.\)

    Nếu x = y => 2/x  =1 => x =y =2

    Nếu  g/s  x > y => 1 = 1/x +1/y  < 2/y =>y < 2 

        => y =1  => 1/x  =0 ( vô lí ) 

Vậy x =y =2; z =1 hoặc x = y =1 ; z =2

5 tháng 2 2016

x=1;y=2;z=3

 Cách lm thì chịu

3 tháng 7 2021

Vai trò bình đẳng của \(x;y;z\) trong phương trình, ta có: \(x\le y\le z\)

Mà: \(x;y;z\) nguyên dương\(\Rightarrow xyz\ne0\)

Do: \(x\le y\le z\Leftrightarrow xyz=x+y+z\le3z\Leftrightarrow xy\le3\Leftrightarrow xy\in\left\{1;2;3\right\}\)

+) Nếu \(xy=1\Leftrightarrow x=y=1\) thay vào phương trình ta có: \(2+z=z\) (Vô lý)

+) Nếu \(xy=2\) mà \(x\le y\Leftrightarrow x=1;y=2\) thay vào phương trình ta có: \(z=3\)

+) Nếu \(xy=3\) mà \(x\le y\Leftrightarrow x=1;y=3\) thay vào phương trình ta có: \(z=2\)

Vậy nghiệm nguyên dương của phương trình là các hoán vị của \(1;2;3\)

21 tháng 1 2020

Đáp án: =0

Giải thích các bước giải:x=y=z=0

#Châu's ngốc

21 tháng 1 2020

Ta có : \(x+y+z=xyz\)(1)

Do vai trò bình đẳng của x, y, z trong phương trình, trước hết ta xét \(x\le y\le z\)

Vì x, y, z nguyên dương nên \(xyz\ne0\), do \(x\le y\le z\)

 \(\Rightarrow xyz=x+y+z\le3z\)

 \(\Rightarrow xy\le3\)

.\(\Rightarrow xy\in\left\{1;2;3\right\}\)
Nếu xy = 1 => x = y = 1, thay vào (1) ta có : 2 + z = z (vô lí)

Nếu xy = 2, do x \(\le\) y nên x = 1 và y = 2, thay vào (1) => z = 3.

Nếu xy = 3, do x \(\le\) y nên x = 1 và y = 3, thay vào (1) => z = 2.

Vậy nghiệm nguyên dương của phương trình (1) là các hoán vị của (1 ; 2 ; 3).

27 tháng 8 2017

tuổi con HN là :

50 : ( 1 + 4 ) = 10 ( tuổi )

tuổi bố HN là :

50 - 10 = 40 ( tuổi )

hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi

ta có sơ đồ : bố : |----|----|----|

                  con : |----| hiệu 30 tuổi

tuổi con khi đó là :

 30 : ( 3 - 1 ) = 15 ( tuổi )

số năm mà bố gấp 3 tuổi con là :

 15 - 10 = 5 ( năm )

       ĐS : 5 năm

mình nha

30 tháng 12 2018

tuổi con HN là :

50 : ( 1 + 4 ) = 10 ( tuổi )

tuổi bố HN là :

50 - 10 = 40 ( tuổi )

hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi

ta có sơ đồ : bố : |----|----|----|

                  con : |----| hiệu 30 tuổi

tuổi con khi đó là :

 30 : ( 3 - 1 ) = 15 ( tuổi )

số năm mà bố gấp 3 tuổi con là :

 15 - 10 = 5 ( năm )

       ĐS : 5 năm

11 tháng 11 2016

Hỏi đáp Toán

ko phải bài của mk nên bn ko tick cx đc,mk chỉ đăng lên để giúp bn thôi

11 tháng 11 2016

vậy nghiệm nguyên dương của PT là bao nhêu

DD
4 tháng 7 2021

Không mất tính tổng quát, giả sử \(x\ge y\ge z\ge1\).

Khi đó ta có: \(13=xyz+x^2+y^2+z^2\ge z^3+3z^2\)

suy ra \(z=1\)

\(12=xy+x^2+y^2\ge y^2+y^2+y^2=3y^2\)

\(\Rightarrow y=1\)hoặc \(y=2\).

Với \(y=1\)\(x^2+1+1+x=13\Leftrightarrow x^2+x-11=0\)không có nghiệm nguyên dương. 

Với \(y=2\)\(x^2+2^2+1^2+1.2.x=13\Leftrightarrow x^2+2x-8=0\Leftrightarrow\left(x-2\right)\left(x+4\right)=0\)

\(\Rightarrow x=2\)thỏa mãn. 

Vậy phương trình có nghiệm là \(\left(1,2,2\right)\)và các hoán vị.