Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Ảnh thật, ngược chiều và lớn hơn vật.
Vị trí đặt ảnh:
\(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}\Rightarrow\dfrac{1}{20}=\dfrac{1}{30}+\dfrac{1}{d'}\Rightarrow d'=60cm\)
Chiều cao ảnh:
\(\dfrac{h}{h'}=\dfrac{d}{d'}\Rightarrow\dfrac{4,5}{h'}=\dfrac{30}{60}\Rightarrow h'=9cm\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a. Dựng ảnh A'B'
b) d > f , ảnh lớn hơn và ngược chiều với vật
c)
Tóm tắt:
OF = 12cm
OA = 18cm
AB = 6cm
A'B' = ?
Giải:
Δ ABF ~ OIF
\(\Rightarrow\dfrac{AB}{OI}=\dfrac{AF}{OF}\Leftrightarrow\dfrac{AB}{A'B'}=\dfrac{OA-OF}{OF}\Leftrightarrow\dfrac{6}{A'B'}=\dfrac{18-12}{12}\)
=> A'B' = 12cm
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(\Delta ABO\sim\Delta A'B'O\Rightarrow\dfrac{AB}{A'B'}=\dfrac{OA}{OA'}\left(1\right)\)
Và \(\Delta OIF\sim\Delta A'B'F\Rightarrow\dfrac{OF}{A'F}=\dfrac{OI}{A'B'}\left(2\right)\)
\(\Rightarrow\dfrac{OF}{OF-OA'}=\dfrac{OA}{OA'}\Rightarrow\dfrac{12}{12-OA'}=\dfrac{6}{OA'}\Rightarrow OA'=4\left(cm\right)\)
Ta có: \(\dfrac{AB}{A'B'}=\dfrac{OA}{OA'}\Rightarrow A'B'=\dfrac{AB.OA}{OA'}=\dfrac{36.6}{4}=54\left(cm\right)\)
Vật ảnh cao 4cm và cách thấu kính 54cm
![](https://rs.olm.vn/images/avt/0.png?1311)
a)
+ Vật AB cách thấu kính một khoảng d = 30 cm
Vì d > f = 10cm, nên ảnh A'B' là ảnh thật, ngược chiều và nhỏ hơn vật
b) Ta có: \(\dfrac{d}{d'}=\dfrac{h}{h'}\Leftrightarrow\dfrac{d}{h}=\dfrac{d'}{h'}\Rightarrow\dfrac{d'}{h'}=\dfrac{30}{2}\Leftrightarrow d'=15h'\)
Áp dụng công thức tính thấu kính:
\(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}\Leftrightarrow\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{15h'}\Rightarrow\dfrac{1}{10}=\dfrac{1}{30}+\dfrac{1}{15h'}\)
\(\Rightarrow h'=1\left(cm\right)\)
Vậy ảnh cao 1(cm)
Khoảng cách từ ảnh đến thấu kính:
\(d'=15h'=15.1=15\left(cm\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)
+ Vật AB cách thấu kính một khoảng d = 30 cm
Vì d > f = 10cm, nên ảnh A'B' là ảnh thật, ngược chiều và nhỏ hơn vật
b) Ta có: \(\dfrac{d}{d'}=\dfrac{h}{h'}\Leftrightarrow\dfrac{d}{h}=\dfrac{d'}{h'}\Leftrightarrow\dfrac{d'}{h'}=\dfrac{30}{2}\Leftrightarrow d'=15h'\)
Áp dụng công thức tính thấu kính:
\(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}\Leftrightarrow\dfrac{1}{10}=\dfrac{1}{30}+\dfrac{1}{15h'}\)
\(\Rightarrow h'=1\left(cm\right)\)
Vậy chiều cao của ảnh là 1(cm)
Khoảng cách từ ảnh đến thấu kính:
\(d'=15h'=15.1=15\left(cm\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(1\right)\dfrac{AB}{A'B'}=\dfrac{OA}{OA'}=\dfrac{OI}{A'B'}\) ( do \(OI=AB\) )
mik nhầm á bạn
a. Bạn tự vẽ ( ảnh ảo )
b. Xét tam giác \(OAB\sim\) tam giác \(OA'B'\)
\(\dfrac{AB}{A'B'}=\dfrac{OA}{OA'}=\dfrac{OI}{OA'}\) ( do OI = OA ) (1)
Xét tam giác \(OIF'\sim\) tam giác \(A'B'F'\)
\(\dfrac{OI}{A'B'}=\dfrac{OF'}{A'F'}\) (2)
\(\left(1\right);\left(2\right)\Rightarrow\dfrac{OA}{OA'}=\dfrac{OF'}{A'F'}=\dfrac{OF'}{OA'+OF'}\)
\(\Leftrightarrow\dfrac{5}{OA'}=\dfrac{8}{OA'+8}\)
\(\Leftrightarrow OA'=\dfrac{40}{3}\left(cm\right)\)
Thế \(OA'=\dfrac{40}{3}\) vào \(\left(1\right)\Leftrightarrow\dfrac{2}{A'B'}=5:\dfrac{40}{3}\)
\(\Leftrightarrow A'B'=\dfrac{16}{3}\left(cm\right)\)
a) Do hứng được ảnh trên màn nên thấu kính đã sử dụng là thấu kính hội tụ.
b)![Lý thuyết ảnh của một vật tạo bởi thấu kính hội tụ | SGK Vật lí lớp 9](https://cdn.vungoi.vn/vungoi/1532420456705_cong_thuc_thau_kinh_hoi_tu.PNG)
Đổi : \(AB=h=5\left(mm\right)=0,5\left(cm\right)\)
Xét \(\Delta OAB\sim\Delta OA'B'\) : \(\dfrac{OA}{OA'}=\dfrac{AB}{A'B'}\) (*)
Xét \(\Delta F'OI\sim\Delta F'A'B'\) : \(\dfrac{OI}{A'B'}=\dfrac{OF'}{F'A'}\).
Mà \(OI=AB\) và \(F'A'=OA'-OF'\) nên \(\dfrac{AB}{A'B'}=\dfrac{OF'}{OA'-OF'}\).
Từ đó, suy ra : \(\dfrac{OA}{OA'}=\dfrac{OF'}{OA'-OF'}\Leftrightarrow\dfrac{18}{d'}=\dfrac{12}{d'-12}\Leftrightarrow d'=36\left(cm\right)\)
Thay lại vào (*) ta được : \(\dfrac{18}{36}=\dfrac{0,5}{h'}\Leftrightarrow h'=1\left(cm\right)\)
Vậy : Ảnh ở vị trí cách thấu kính 36cm và cao 1cm.
cảm ơn bạn