Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
MÌNH THAM KHẢO NHÉ
a) Xét △ABO và △A′B′O có:
ABOˆ=A′B′Oˆ=900
BOAˆ=B′OA′ˆ (hai góc đối đỉnh)
⇒ Hai tam giác ABO và A'B'O là hai tam giác đồng dạng
⇒ \(\frac{A'B'}{AB}=\frac{B'O}{BO}\)
⇒ Độ phóng đại ảnh \(k=\frac{A'B'}{AB}=\frac{h'}{h}=\frac{d'}{d}\)
b) Tương tự: Hai tam giác A'B'F' và IOF' là hai tam giác đồng dạng
⇒\(\text{ }\frac{B'F'}{OF'}=\frac{A'B'}{IO}=\frac{d'}{d}\)
Áp dụng tính chất của tỉ lệ thức: \(\frac{B'F'+OF'}{OF'}=\frac{d'+d}{d}\)hay \(\frac{d'}{f}=\frac{d'+d}{d}\)
⇒\(\frac{1}{f}=\frac{1}{d}=\frac{1}{f'}\)
CÓ MẤY CÁI KÍ HIỆU GÓC, MÌNH KHÔNG BIẾT VIẾT, BẠN THÔNG CẢM
a) Xét \(\Delta ABO\) và \(\Delta A'B'O'\)
\(ABO=A'B'O=90^0\)
\(BOA=B'O'A\)( hai góc đối đỉnh )
\(\Rightarrow\)Hai tam giác ABO và A'B'O là hai tam giác đồng dạng
\(\Rightarrow\frac{A'B}{AB}=\frac{B'O}{BO}\)
\(\Rightarrow\)Độ phóng đại ảnh : \(k=\frac{A'B}{AB}=\frac{h'}{h}=\frac{d'}{d}\)
b) Tương tự : Hai tam giác A'B'F và IOF' là hai tam giác đồng dạng
\(\Rightarrow\frac{B'F'}{OF}=\frac{A'B}{TO}=\frac{d'}{d}\)
Dựa vào tính chất của tỉ lệ thức : \(\frac{B'F'+OF'}{OF'}=\frac{d'+d}{d}\)hay \(\frac{d'}{f}=\frac{d'+d}{d}\)
+ Ta có: d′ = f 2
+ Ta suy ra: h h ' = d d ' = f f 2 = 2 ⇒ h=2h’
Đáp án: B
Từ hình vẽ, vì A ≡ F và tia tới BI song song với trục chính nên hình ABIO là hình chữ nhật có AI và BO là hai đường chéo cắt nhau tại trung điểm của mỗi đường → B’ là trung điểm của BO
Mà A’B’ // AB nên A’B’ là đường trung bình của tam giác ABO
Dựng ảnh A'B' của AB qua thấu kính phân kì.
Dùng hai trong ba tia sáng đã học để dựng ảnh B’ của điểm B.
+ Tia BI đi song song với trục chính nên cho tia ló có đường kéo dài đi qua F
+ Tia tới BO là tia đi quang tâm O nên cho tia ló đi thẳng
+ Hai tia ló trên có đường kéo dài giao nhau tại B’, ta thu được ảnh ảo B’ của B qua thấu kính.
+ Từ B’ hạ vuông góc với trục của thấu kính, cắt trục chính tại điểm A’. A’ là ảnh của điểm A. A’B’ là ảnh ảo của AB tạo bởi thấu kính phân kỳ. (Hình 44-45.4a)
a. Bạn tự vẽ ( ảnh ảo )
b.Xét tam giác \(OAB\sim\) tam giác \(OA'B'\)
\(\dfrac{OA}{OA'}=\dfrac{AB}{A'B'}=\dfrac{OI}{A'B'}\) ( do OI = AB ) (1)
Xét tam giác \(OIF'\sim\) tam giác \(A'B'F'\)
\(\dfrac{OI}{A'B'}=\dfrac{OF'}{A'F'}\) (2)
\(\left(1\right);\left(2\right)\Rightarrow\dfrac{OA}{OA'}=\dfrac{OF'}{A'F'}=\dfrac{OF'}{OA'+OF'}\)
\(\Leftrightarrow\dfrac{8}{OA'}=\dfrac{10}{OA'+10}\)
\(\Leftrightarrow OA'=d'=40\left(cm\right)\)
Thế \(OA'=40\) vào (1) \(\Leftrightarrow\dfrac{8}{40}=\dfrac{1}{A'B'}\)
\(\Leftrightarrow A'B'=h'=5\left(cm\right)\)
\(d=f=16cm\)
Khoảng cách từ ảnh đến thấu kính là \(d'=0cm\)
Vật có độ cao bao nhiêu thì ảnh có độ cao bấy nhiêu.
\(\Rightarrow h'=h=2cm\)
a) vì là TKHT mà theo đề thì ta có d (tức là OA) < f ,=> ảnh ảo, cùng chiều và lớn hơn vật
b)Xét tam giác OAB đồng dạng vs ta, giác OA'B'
=> h/h' = d/d' (AB/A'B'=OA/OA')..........(1)
xét tam giac F'OI đồng dạng vs tgiac F'A'B'
=> h/h' = f/(f+d') (( OI/A'B' = FO/(FO+FA')))..........(2)
từ 1 và 2 => d/d' =f/(f+d')
chia 2 vế cho dd'f => 1/d =1/f + 1/d'
theo đề có d và f => d'=12
thế d'=12, d=6, h=1 vào (1)
=>h'=2
F' A O A' B' I
a) dựng ảnh A'B' của AB qua thấu kính hội tụ
sử dung 2 trong 3 tia sáng đặc biêt
tia (1) : từ A kẻ đường thẳng đi qua quang tâm O cho tia sáng truyền thẳng
tia (2): từ A kẻ đường thẳng song song với trục chính của thấu kính cho tia sáng đi qua tiêu điểm ảnh (F') của thấu kính
giao của 2 tia tại A'
từ A' kẻ đường thẳng vuông góc với trục chính tại B'
b) ΔOAB∞ΔOA′B′(g.g)⇒OA/OA'=AB/A′B′⇔d/d′=AB/A′B′(1)
mà:
ΔOIF′∞ΔA′B′F′(g.g)⇒OI/A′B′=OF′/F′A′⇔AB/A′B′=f/d′−f(2)
từ (1) và (2) ta có:
d/d′=f/d′−f⇔24/d′=12/d′−12⇒d′=24cm
độ cao của ảnh:
A′B/′AB=d′/d⇒A′/B′=2.24/24=2cm
Chúc bn học tốt
Thay vào (1) ta được:
→ Đáp án B