Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(y=u^2=\left(sinx\right)^2\)
b: \(y'\left(x\right)=\left(sin^2x\right)'=2\cdot sinx\cdot cosx\)
\(y'\left(u\right)=\left(u^2\right)'=2\cdot u\)
\(u'\left(x\right)=\left(sinx\right)'=cosx\)
=>\(y'\left(x\right)=y'\left(u\right)\cdot u'\left(x\right)\)
\(a,y=\left(u\left(x\right)\right)^2=\left(x^2+1\right)^2=x^4+2x^2+1\\ b,y'\left(x\right)=4x^3+4x,u'\left(x\right)=2x,y'\left(u\right)=2u\\ \Rightarrow y'\left(u\right)\cdot u'\left(x\right)=2u\cdot2x=4x\left(x^2+1\right)=4x^3+4x\)
Vậy \(y'\left(x\right)=y'\left(u\right)\cdot u'\left(x\right)\)
a: \(y=f\left(x^2\right)=sin\left(x^2\right)\)
b: \(y=f\left(g\left(x\right)\right)=f\left(x^2\right)=sinx^2\)
Câu 2:
ĐKXĐ: \(x+180^0\ne90^0+k\cdot180^0\)
hay \(x\ne k\cdot180^0-90^0\)
Câu 4:
ĐKXĐ: \(\left\{{}\begin{matrix}2x\ne k\cdot180^0\\2x\ne90^0+k\cdot180^0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne\dfrac{k\Pi}{2}\\x\ne\dfrac{k\Pi}{2}+\dfrac{\Pi}{4}\end{matrix}\right.\)
Độ dài bé nhất của vecto u → bằng khoảng cách từ một điểm bất kì trên d tới d’ bằng:
Đáp án C
A=B/2:B=A (nhap tren may)
dc 3/2 3/4 3/8
=> cttq Un= 3/(2^(n-1))