Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/97 chứ sao lại 1/91!
giải:
đặt :1/5+1/14+1/28+1/44+1/61+1/85+1/97 =A
ta có :A=1/5(1/14+1/28+1/44)+(1/61+1/85+1/97)
A<1/5(1/14.3)+(1/61.3)
A<1/5+3/14+3/61
A<1/5+3/12+1/20
A<1/5+1/4+1/20
=>A<1/2
VẬY dpcm
Ta có \(\frac{1}{5}=\frac{1}{5}\)
\(\frac{1}{14}< \frac{1}{10};\frac{1}{28}< \frac{1}{10}\)
\(\frac{1}{44}< \frac{1}{40};\frac{1}{61}< \frac{1}{40};\frac{1}{85}< \frac{1}{40};\frac{1}{97}< \frac{1}{40}\)
\(\Rightarrow\frac{1}{5}+\frac{1}{14}+\frac{1}{28}+\frac{1}{44}+\frac{1}{61}+\frac{1}{85}+\frac{1}{97}< \frac{1}{5}+\frac{1}{10}+\frac{1}{10}+\frac{1}{40}+\frac{1}{40}+\frac{1}{40}+\frac{1}{40}=\frac{1}{5}+\frac{1}{5}+\frac{1}{10}=\frac{5}{10}=\frac{1}{2}\)\(\Rightarrow A< \frac{1}{2}\)
A=\(\frac{10^8+2}{10^8-1}=1+\frac{3}{10^8-1}\)
\(B=\frac{10^8}{10^8-3}=1+\frac{3}{10^8-3}\)
Vì\(10^8-1>10^8-3\)
\(\Rightarrow\frac{3}{10^8-1}< \frac{3}{10^8-3}\)
\(\Rightarrow1+\frac{3}{10^8-1}< 1+\frac{3}{10^8-3}\)
Vậy \(A< B\)
Cách 1: Tính hết kết quả vế trái là so sánh được => đpcm
Cách 2: Ta đánh giá: Cho a, b là 2 số dương nếu a < b thì 1/a > 1/b
Vậy:
VT < 1/5 + 1/14 + 1/14 + 1/14 + 1/14 + 1/14
= 1/5 + 5/14 = (14 + 25)/(5.14) = 39/70 < 1 (đpcm)
Có thể còn cách khác, bạn tìm thêm đi.
ta có vế trái=0,37 mà 1/2=0,5 nên suy ra nó lớn hơn:v