Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+...+\left|x+\frac{1}{101}\right|=101x\)
Ta thấy:
\(VT\ge0\Rightarrow VP\ge0\Rightarrow101x\ge0\Rightarrow x\ge0\)
\(\Rightarrow\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{6}\right)+...+\left(x+\frac{1}{101}\right)=101x\)
\(\Rightarrow\left(x+x+...+x\right)+\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{101}\right)=0\)
\(\Rightarrow10x+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{10.11}\right)=0\)
\(\Rightarrow10x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\right)=0\)
\(\Rightarrow10x+\left(1-\frac{1}{11}\right)=0\)
\(\Rightarrow10x+\frac{10}{11}=0\)
\(\Rightarrow10x=-\frac{10}{11}\Rightarrow x=-\frac{1}{11}\)(loại,vì x\(\ge\)0)
Bài 2:
Ta thấy: \(\begin{cases}\left(2x+1\right)^{2008}\ge0\\\left(y-\frac{2}{5}\right)^{2008}\ge0\\\left|x+y+z\right|\ge0\end{cases}\)
\(\Rightarrow\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|\ge0\)
Mà \(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)
\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)
\(\Rightarrow\begin{cases}\left(2x+1\right)^{2008}=0\\\left(y-\frac{2}{5}\right)^{2008}=0\\\left|x+y+z\right|=0\end{cases}\)\(\Rightarrow\begin{cases}2x+1=0\\y-\frac{2}{5}=0\\x+y+z=0\end{cases}\)
\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\x+y+z=0\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{2}+\frac{2}{5}+z=0\end{cases}\)
\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{10}=-z\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{1}{10}\end{cases}\)
2m - 2n = 256 = 28 \(\Rightarrow\)2n . ( 2m-n - 1 ) = 28
dễ thấy m \(\ne\)n , ta xét 2 trường hợp :
a) nếu m - n = 1 thì từ ( 1 ) ta có : 2n . ( 2 - 1 ) = 28 . suy ra : n = 8, m = 9
b) nếu m - n \(\ge\)2 thì 2m-n - 1 là 1 số lẻ lớn hơn 1 nên vế trái của ( 1 ) chứa thừa số nguyên tố lẻ khi phân tích ra thừa số nguyên tố. còn vế phải của ( 1 ) chỉ chứa thừa số nguyên tố 2. Mâu thuẫn
Vậy n = 8 , m = 9 là đáp số bài trên
đặt A = \(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{99}{3^{99}}+\frac{100}{3^{100}}\)
3A = \(1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{99}{3^{98}}+\frac{100}{3^{99}}\)
3A - A = 2A = \(1+\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}+\frac{1}{3^{99}}\right)-\frac{100}{3^{100}}\)
biểu thức trong dấu ngoặc nhỏ hơn \(\frac{1}{2}\)( tự chứng minh ) nên 2A < 1 + \(\frac{1}{2}\)
\(\Rightarrow A< \frac{3}{4}\)
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2009}{2011}\)
\(\Rightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+....+\frac{2}{x\left(x+1\right)}=\frac{2009}{2011}\)
\(\Rightarrow2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+....+\frac{1}{x\left(x+1\right)}\right)=\frac{2009}{2011}\)
\(\Rightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+.....+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2009}{2011}\)
\(\Rightarrow2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2009}{2011}\)
\(\Rightarrow2\cdot\frac{x-1}{2x+2}=\frac{2009}{2011}\)
\(\Rightarrow\frac{2x-2}{2x+2}=\frac{2009}{2011}\)
Bạn làm nốt.Nhân chéo là ra
\(\left(x-1\right)f\left(x\right)=\left(x+4\right)\cdot f\left(x+8\right)\)
Với \(x=1\) ta có:
\(\left(1-1\right)\cdot f\left(1\right)=\left(1+4\right)\cdot f\left(9\right)\)
\(\Rightarrow5\cdot f\left(9\right)=0\)
\(\Rightarrow f\left(9\right)=0\)
Vậy \(x=9\)
Thay \(x=-4\) vào ta được:
\(\left(-4-1\right)\cdot f\left(-4\right)=0\cdot f\left(4\right)\)
\(\Rightarrow f\left(-4\right)=0\)
Vậy \(x=-4\)
\(\Rightarrow f\left(x\right)\) có ít nhất 2 nghiệm là 9;-4
\(4^{x+1}.2=32\)
\(4^{x+1}=32:2\)
\(4^{x+1}=16\)
\(4^{x+1}=4^2\)
\(\Rightarrow x+1=2\)
\(\Rightarrow x=1\)
vậy \(x=1\)
\(\left(x-\frac{2}{3}\right)^2=\frac{25}{81}\)
\(\left(x-\frac{2}{3}\right)^2=\left(\frac{5}{9}\right)^2\)
\(\Rightarrow x-\frac{2}{3}=\frac{5}{9}\)
\(\Rightarrow x=\frac{11}{9}\)
vậy \(x=\frac{11}{9}\)
\(500^{300}=\left(500^3\right)^{100}=125000000^{100}\)
\(300^{500}=\left(300^5\right)^{100}\)
vì \(\left(500^3\right)^{100}< \left(300^3\right)^{100}\)nên\(500^{300}< 300^{500}\)
\(4^{45}=\left(4^9\right)^5=262144^5\)
\(3^{60}=\left(3^{12}\right)^5=531441^5\)
vì \(262144^5< 531441^5\) nên \(4^{45}< 3^{60}\)
a) \(\left(2x+3\right)^2=\frac{9}{144}\)
\(\Leftrightarrow\left(2x+3\right)^2=\left(\frac{1}{4}\right)^2=\left(-\frac{1}{4}\right)^2\)
\(\Rightarrow\orbr{\begin{cases}2x+3=\frac{1}{4}\\2x+3=\frac{-1}{4}\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=\frac{-11}{4}\\2x=\frac{-13}{4}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{-11}{8}\\x=\frac{-13}{8}\end{cases}}}\)
Vậy ...
b) Ta có: \(\left(3x-1\right)^3=\frac{-8}{27}=\left(\frac{-2}{3}\right)^3\)
\(\Leftrightarrow3x-1=\frac{-2}{3}\Leftrightarrow3x=\frac{1}{3}\Leftrightarrow x=\frac{1}{9}\)
Vậy ....
c) \(x^{10}=25x^8\Leftrightarrow x^{10}:x^8=25\Leftrightarrow x^2=25\Leftrightarrow x=\left\{5;-5\right\}\)
Vậy ...
d) \(\frac{x^7}{81}=27\Leftrightarrow x^7=27.81=2187\)
Mà 37 = 2187 => x7 = 37 => x = 3
Vậy ....
e) \(\frac{x^8}{9}=729\Leftrightarrow x^8=729.9=6561\)
Mà 38 = (-3)8 = 6561
=> x8 = 38 = (-3)8
=> x = {-3;3}
Vậy ...
a) Thiếu đề (hoặc sai)
b) x đâu?
c)\(3x-1=x+2\)
\(\Rightarrow3x-x=2+1\)
\(\Rightarrow2x=3\)
\(\Rightarrow x=\frac{3}{2}\)
c) \(\frac{x+2}{5}=\frac{2-3x}{3}\)
\(\Rightarrow3.\left(x+2\right)=5.\left(2-3x\right)\)
\(\Rightarrow3x+6=10-15x\)
\(\Rightarrow3x+15x=10-6\)
\(\Rightarrow18x=4\)
\(\Rightarrow x=\frac{4}{18}=\frac{2}{9}\)
câu 1 là \(x\times\left(4.6+\frac{3}{5}\right)=7.2-8.15\)
câu 2 là \(42+\frac{3}{7}.\left[3\times x-1=12\right]\)
a) \(1-\frac{1}{2}.\left(\frac{3}{2}-2x\right)=4x-\frac{1}{4}\)
\(-4x+\frac{3}{4}+x=1+\frac{1}{4}\)
\(-3x=\frac{4}{4}+\frac{1}{4}-\frac{3}{4}\)
\(-3x=\frac{1}{2}\)
\(x=\frac{-1}{6}\)
vay \(x=\frac{-1}{6}\)
b) \(x^{10}=1024\)
\(x^{10}=2^{10}\)
\(\Rightarrow x=2\)
vay \(x=2\)
c) \(3^x=81\)
\(3^x=3^4\)
\(\Rightarrow x=4\)
vay \(x=4\)