Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Với p = 2 thì p + 2 = 2 + 2 = 4, không là số nguyên tố, loại
+ Với p = 3 thì p + 2 = 3 + 2 = 5; p + 4 = 3 + 4 = 7, đều là số nguyên tố, chọn
+ Với p > 3, do p nuyên tố nên p = 3k + 1 hoặc p = 3k + 2 (k thuộc N*)
Nếu p = 3k + 1 thì p + 2 = 3k + 1 + 2 = 3k + 3 = 3.(k + 1) chia hết cho 3
Mà 1 < 3 < p + 2 => p + 2 là hợp số, loại
Nếu p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 = 3.(k + 2) chia hết cho 3
Mà 1 < 3 < p + 4 => p + 4 là hộp số, loại
Vậy p = 3
+ Với p = 2 thì p + 2 = 2 + 2 = 4, không là số nguyên tố, loại
+ Với p = 3 thì p + 2 = 3 + 2 = 5; p + 4 = 3 + 4 = 7, đều là số nguyên tố, chọn
+ Với p > 3, do p nuyên tố nên p = 3k + 1 hoặc p = 3k + 2 (k thuộc N*)
Nếu p = 3k + 1 thì p + 2 = 3k + 1 + 2 = 3k + 3 = 3.(k + 1) chia hết cho 3
Mà 1 < 3 < p + 2 => p + 2 là hợp số, loại
Nếu p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 = 3.(k + 2) chia hết cho 3
Mà 1 < 3 < p + 4 => p + 4 là hộp số, loại
Vậy p = 3
p và 2p+1 nguyên tố
* nếu p = 3 thì p và 2p+1 đều nguyên tố, 4p+1 = 13 nguyên tố
* xét p # 3
=> 2p không chia hết cho 3, và 2p+1 là số nguyên tố > 3 nên không chia hết cho 3
=> 2p+2 chia hết cho 3 (do 3 số nguyên liên tiếp phải có 1 số chia hết cho 3)
=> 2(2p+2) = 4p+4 = 4p+1+3 chia hết cho 3 => 4p+1 chia hết cho 3
kết luận: 4p+1 nguyên tố nếu p = 3, và là hợp số nếu p nguyên tố # 3
Nhanh nhanh giai giup nha moi nguoi toi sap bai kiem tra mot tiet may bai nay roi
a: Trường hợp 1: p=2
=>p+11=13(nhận)
Trường hợp 2: p=2k+1
=>p+11=2k+12(loại)
b: Trường hợp 1: p=3
=>p+8=11 và p+10=13(nhận)
Trường hợp 2: p=3k+1
=>p+8=3k+9(loại)
Trường hợp 3: p=3k+2
=>p+10=3k+12(loại)
Để p + 11 là số nguyên tố thì p là số chẵn (nếu p là số lẻ thì p + 11 là số chẵn \(\Rightarrow p+11⋮2\) mà chia hết cho một số thì không phải là số nguyên tố)
Trong tập hợp các số nguyên tố chỉ có 2 là số chẵn. Vậy p = 2
b) Để p + 8, p + 10 là số nguyên tố thì p là số lẻ (nếu p là số chẵn thì \(p+8⋮2,p+10⋮2\) mà chia hết cho một số thì không phải là số nguyên tố
Nếu p = 3, p + 8 = 3 + 8 = 11 là số NT; p + 10 = 3 + 10 = 13 là số NT (chọn)
Nếu \(p=3k\left(k\in N|k>1\right)\)thì p là hợp số (loại)
Nếu \(p=3k+1\left(k\in N\right)\Rightarrow p+8=3k+1+8=3k+9⋮3\) (loại)
Nếu \(p=3k+2\left(k\in N\right)\Rightarrow p+10=3k+2+10=3k+9⋮3\)
(loại)
Vậy p=3
Gọi d là ƯCLN﴾2n+1;6n+5﴿ với d ≠ 0
=> 2n+1 chia hết cho d
=> 3﴾2n+1﴿ chia hết cho d
=> 6n+3 chia hết cho d ﴾1﴿
Do 6n +5 chia hết cho d
Từ ﴾1﴿ suy ra 6n+5 ‐ 6n+3 chia hết cho d hay 2 chia hết cho d
=> d ∈ {1;2}
Do 2n+1 ko chia hết cho 2
nên d ≠ 2
=> d=1
Vậy 2n + 1 va 6n + 5 la 2 so nguyen to cung nhau