Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
Gọi d là ƯCLN(2n+5;3n+7)
=> 2n+5 chia hết cho d;3n+7 chia hết cho d
=> 6n+15 chia hết cho d;6n+14 chia hết cho d
=> (6n+15-6n+14) chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy 2n+5 và 3n+7 nguyên tố cùng nhau.
a, Gọi hai số tự nhiên cần tìm là a và b
Ta có : \(a=6.k_1;b=6.k_2\)
Trong đó : \(ƯCLN\left(k_1,k_2\right)=1\)
Mà : \(a+b=84\Rightarrow6.k_1+6.k_2=84\)
\(\Rightarrow6\left(k_1+k_2\right)=84\Rightarrow k_1+k_2=84\div6=14\)
+) Nếu : \(k_1=1\Rightarrow k_2=13\Rightarrow\begin{cases}a=6\\b=78\end{cases}\)
+)Nếu : \(k_1=3\Rightarrow k_2=11\Rightarrow\begin{cases}a=18\\b=66\end{cases}\)
+)Nếu : \(k_1=5\Rightarrow k_2=9\Rightarrow\begin{cases}a=30\\b=54\end{cases}\)
Vậy ...
b, Tương tự câu a,
c, Gọi hai số tự nhiên cần tìm là a và b
Vì : \(ƯCLN\left(a,b\right)=10;BCNN\left(a,b\right)=900\)
\(\RightarrowƯCLN\left(a,b\right).BCNN\left(a,b\right)=a.b=900.10=9000\)
Phần còn lại giống câu a và câu b tự làm
Gọi các số phải tìm là a và b, giả sử a < b. Ta có ( a, b ) = 10 nên a = 10a', b = 10b', ( a', b' ) = 1, a' < b'. Do đó ab = 100a'b' ( 1 ). Mặt khác ab [ a, b ] . ( a, b ) = 900.10 = 9000 ( 2 )
Từ ( 1 ) và ( 2 ) suy ra a'b' = 90. Ta có các trường hợp
a' | 1 | 2 | 5 | 9 |
b' | 90 | 45 | 18 | 10 |
Do đó
a | 10 | 20 | 50 | 90 |
b | 900 | 450 | 180 | 100 |
3) Tìm ƯCLN của hai số bằng thuật toán Ơ - clit.
Gọi các số phải tìm là a và b, giả sử a < b. Ta có ( a, b ) = 10 nên a = 10a', b = 10b', ( a', b' ) = 1, a' < b'. Do đó ab = 100a'b' ( 1 ). Mặt khác ab [ a, b ] . ( a, b ) = 900.10 = 9000 ( 2 )
Từ ( 1 ) và ( 2 ) suy ra a'b' = 90. Ta có các trường hợp
a' | 1 | 2 | 5 | 9 |
b' | 90 | 45 | 18 | 10 |
Do đó
a | 10 | 20 | 50 | 90 |
b | 900 | 450 | 180 | 100 |
a) n=7k+1 ( \(k\in N\))
b) 18 va 66 hoac 6 va 78 hoac 30 va 54
c) 15 va 20 hoac 5 va 60
d) 10 va 900 hoac 20 va 450 hoac 180 va 50 hoac 100 va 90
a, Gọi hai số phải tìm là a,b. Ta có (a;b) = 6 => a = 6a’, b = 6b’ với (a’,b’) = 1(a,b,a’,b’ ∈ N)
Do đó: a+b = 84 => 6.(a’+b’) = 84 => a’+b’ = 14
Chọn cặp số a’,b’ là hai số nguyên tố cùng nhau có tổng bằng 14 ta được:
Do đó:
b, Gọi hai số phải tìm là a.b. Ta có (a;b) = 5 => a = 5a’, b = 5b’ với (a’,b’) = 1 (a,b,a’,b’ ∈ N)
Do ab = 300 => 25a’b’ = 300 => a’b’ = 12 = 4.3
Chọn cặp số a’,b’ nguyên tố cùng nhau có tích bằng 12 ta được:
a’ = 1, b’ = 12 => a = 5, b = 60
a’ = 3, b’ = 4 => a = 15, b = 20
c, Gọi hai số phải tìm là a,b. Ta có (a;b) = 10 => a = 10a’; b = 10b’ với (a’,b’) = 1 (a,b,a’,b’ ∈ N, a’<b’). Do đó: ab = 100a’b’ (1)
Mặt khác: ab = [a,b].(a,b) = 900.10 = 9000 (2)
a’ = 1, b’ = 90 => a = 10, b = 900
a’ = 2, b’ = 45 => a = 20, b = 450
a’ = 5, b’ = 18 => a = 50, b = 180
a’ = 9, b’ = 10 => a = 90, b = 100
gọi 2 số đó là a và b ( a < hoặc=b)
Vì ƯCLN của chúng =10=> a=10k b=10q (k,q)=1 (1) (k> hoặc = q)
(vì a.b=Bcnn(a,b). Ư Cln (a,b)=10x900=9000
=> 10k.10q=9000
=>100(k.q)=9000 => k.q=90 (2)
TỪ (1) và (2) => k=10, q=9 hoặc .........
=> a=........ b=..........