K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2018

\(x^4-2x^2+1+x^2+2x+1+2018=\left(x^2-1\right)^2+\left(x+1\right)^2+2018\ge2018\)

Dấu "=" xayr ra <=> \(\hept{\begin{cases}x^2-1=0\\x+1=0\end{cases}\Leftrightarrow x=-1}\)

Kết luận :...

26 tháng 10 2016

\(P=x^2+20y^2+8xy-4y+2009\)

\(=\left(x^2+8xy+16y^2\right)+\left(4y^2-4y+1\right)+2008\)

\(=\left(x+4y\right)^2+\left(2y-1\right)^2+2008\)

Vì: \(\begin{cases}\left(x+4y\right)^2\ge0\\\left(2y-1\right)^2\ge0\end{cases}\)\(\Rightarrow\left(x+4y\right)^2+\left(2y-1\right)^2\ge0\)

\(\Rightarrow\left(x+4y\right)^2+\left(2y-1\right)^2+2008\ge2008\)

Vậy GTNN của bt trên là 2008 khi \(\begin{cases}x+4y=0\\2y-1=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=-2\\y=\frac{1}{2}\end{cases}\)

26 tháng 10 2016

dạ cám ơn bn nhiều

24 tháng 7 2016

x4+x=x(x3+1)=x(x+1)(x2-x+1)

x4+64=x4+16x2+64-16x2=(x2+8)2-(4x)2=(x2+8+4x)(x2+8-4x)

4x4+81=4x4+36x2+81-36x2=(2x2+9)2-(6x)2=(2x2+9+6x)(2x2+9-6x)

64x4+y4=64x4+16(xy)2+y4-16(xy)2=(8x2+y2)-(4xy)2=(8x2+y2-4xy)(8x2+y2=4xy)

x4+4y4=x4+4(xy)2+4y4-4(xy)2=(x2+2y2-2xy)(x2+2y2+2xy)

x4+x2+1=(x4+2x2+1)-x2=(x2+1-x)(x2+1+x)

Mình làm có vài đoạn hơi tắt nha.

9 tháng 12 2018

a.      \(A=10x-x^2+1974\)

            \(=-\left(x^2-10x+25-25-1974\right)\)

            \(=-\left(x-5\right)^2+1999\)

Ta có: \(-\left(x-5\right)^2\le0\Rightarrow-\left(x-5\right)^2+1999\le1999\)

Vậy GTLN của A là 1999 tai x-5=0 => x=5

9 tháng 12 2018

b.    \(B=x^2+20y^2+8xy-4y+2009\)

         \(=\left(x^2+8xy+16y^2\right)+\left(4y^2-4y+1\right)+2008\)

         \(=\left(x+4y\right)^2+\left(2y-1\right)^2+2008\)

Ta có : \(\left(x+4y\right)^2\ge0;\left(2y-1\right)^2\ge0\)

         \(\Rightarrow\left(x+4y\right)^2+\left(2y-1\right)^2+2008\ge2008\)

Vậy GTNN của B là 2008 tại x+4y=0 và 2y-1=0\(\Rightarrow x+4y=0;y=\frac{1}{2}\)

                                                        \(\Rightarrow x=-2;y=\frac{1}{2}\)

24 tháng 6 2016

A = (x-1)(x+2)(x+3)(x+6) 

= (x - 1)(x + 6)(x + 2)(x + 3) 

= ( x2 + 5x - 6)(x2 + 5x + 6) 

= ( x2 + 5x )2 - 36 \(\ge\) -36 

Dấu  "="  <=> x = 0 hoặc x = -5 

Vậy A min = -36 <=> x = 0 hoặc x = - 5 .

B=x- 2x+y2 +4y+8

=x2-2x+1+y2+4y+4+3

=(x-1)2+(y+2)2+3

=(x-1)2+(y+2)2+3 \(\ge\)3

Dấu "=" <=>x=1 và y=-2

Vậy A min=3 <=>x=1 và y=-2

24 tháng 6 2016

1. nhóm (x-1)(x+6)(x+2)(x+3) 
nhân vào 
sẽ ra (x^2+6x-x-6)(x^2+3x+2x+6) 
từ đó suy ra 
(x^2-5x)^2 - 6^2 
vì (x^2-5x)^2 lun lớn hon ko 
nên dấu “=” xảy ra khi (x^2-5x)^2=0 
x^2-5x = 0 <=> x(x-5)=0 <=> x= 0 hoặc x = 5 

 

24 tháng 6 2016

Bx2 - 2.3x + 9 +2(y2 - 2y +1) + 7 
=(x-3)2 +2(y-1)^2 +7 >+ 7 
Vậy Min B= 7 <=> x=3 và y=1

 
30 tháng 11 2017

\(D=x^2+20y^2+8xy-4y+2009\)

\(\Leftrightarrow D=x^2+16y^2+4y^2+8xy-4y+1+2008\)

\(\Leftrightarrow D=\left(x^2+8xy+16y^2\right)+\left(4y^2-4y+1\right)+2008\)

\(\Leftrightarrow D=\left[x^2+2.x.4y+\left(4y\right)^2\right]+\left[\left(2y\right)^2-2.2y.1+1^2\right]+2008\)

\(\Leftrightarrow D=\left(x+4y\right)^2+\left(2y-1\right)^2+2008\)

Vậy GTNN của \(D=2008\) khi \(\left\{{}\begin{matrix}x+4y=0\\2y-1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x+4.\left(0,5\right)=0\\y=0,5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-2\\y=0,5\end{matrix}\right.\)

30 tháng 11 2017

a) \(C=x^2-4xy+5y^2+10x-22y+28\)

\(\Leftrightarrow C=x^2-4xy+4y^2+y^2+10x-20y-2y+1+25+2\)

\(\Leftrightarrow C=\left(x^2-4xy+4y^2\right)+\left(10x-20y\right)+\left(y^2-2y+1\right)+2+25\)

\(\Leftrightarrow C=\left(x-2y\right)^2+10\left(x-2y\right)+\left(y-1\right)^2+2+25\)

\(\Leftrightarrow C=\left[\left(x-2y\right)^2+10\left(x-2y\right)+25\right]+\left(y-1\right)^2+2\)

\(\Leftrightarrow C=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\)

Vậy GTNN của \(C=2\) khi \(\left\{{}\begin{matrix}x-2y+5=0\\y-1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x-2.1+5=0\\y=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)

1 tháng 7 2019

\(A=x^2+4y^2-2xy+4x-10y+2020.\)

\(=\left(x^2-2xy+y^2\right)+\left(3y^2-6y+3\right)+\left(4x-4y\right)+2017\)

\(=\left(x-y\right)^2+3\left(y-1\right)^2+4\left(x-y\right)+2017\)

\(=\left[\left(x-y\right)^2+4\left(x-y\right)+4\right]+3\left(y-1\right)^2+2013\)

\(=\left(x-y+2\right)^2+3\left(y-1\right)^2+2013\)

\(A_{min}=2013\Leftrightarrow\hept{\begin{cases}\left(x-y+2\right)^2=0\\\left(y-1\right)^2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x-y+2=0\\y=1\end{cases}\Rightarrow\hept{\begin{cases}x=-1\\y=1\end{cases}}}\)

1 tháng 7 2019

\(B=8x^2+y^2-4xy-12x+2y+30\)

\(=\left(4x^2-4xy+y^2\right)+\left(4x^2-8x+4\right)-\left(4x-2y\right)+26\)

\(=\left(2x-y\right)^2+4\left(x-1\right)^2-2\left(2x-y\right)+26\)

\(=\left[\left(2x-y\right)^2-2\left(2x-y\right)+1\right]+4\left(x-1\right)^2+25\)

\(=\left(2x-y-1\right)^2+4\left(x-1\right)^2+25\)

\(\Rightarrow B_{min}=25\)\(\Leftrightarrow\hept{\begin{cases}\left(2x-y-1\right)^2=0\\\left(x-1\right)^2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x-y-1=0\\x=1\end{cases}}\)\(\Leftrightarrow x=y=1\)