K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2017

\(=\)\(-\frac{19}{29}\)

15 tháng 10 2017

cụ thể đi bạn ơi

14 tháng 7 2016

\(A=\frac{\left(2^2\right)^5.\left(3^2\right)^4-2.\left(2.3\right)^9}{2^{10}.3^8+\left(2.3\right)^8.2^2.5}=\frac{2^{10}.3^8-2^{10}.3^9}{2^{10}.3^8+2^{10}.3^8.5}=\frac{2^{10}.3^8\left(1-3\right)}{2^{10}.3^8\left(1+5\right)}=\frac{-2}{6}=\frac{-1}{3}\)

14 tháng 7 2016

A = \(\frac{4^5.9^4-2.6^9}{2^{10}.3^8+6^8.20}=\frac{\left(2^2\right)^5.\left(3^2\right)^4-2.\left(2.3\right)^9}{2^{10}.3^8+\left(2.3\right)^8.2^2.5}=\frac{2^{10}.3^8-2^{10}.3^9}{2^{10}.3^8+2^{10}.3^8.5}\)\(=\frac{2^{10}.3^8.\left(1-3\right)}{2^{10}.3^8.\left(1+5\right)}=\frac{-2}{6}=\frac{-1}{3}\)

2 tháng 8 2017

2m - 2n = 256 = 28 \(\Rightarrow\)2n . ( 2m-n - 1 ) = 28

dễ thấy m \(\ne\)n , ta xét 2 trường hợp :

a) nếu m - n = 1 thì từ ( 1 ) ta có : 2n . ( 2 - 1 ) = 28 . suy ra : n = 8, m = 9

b) nếu m - n \(\ge\)2 thì 2m-n - 1 là 1 số lẻ lớn hơn 1 nên vế trái của ( 1 ) chứa thừa số nguyên tố lẻ khi phân tích ra thừa số nguyên tố. còn vế phải của ( 1 ) chỉ chứa thừa số nguyên tố 2. Mâu thuẫn

Vậy n = 8 , m = 9 là đáp số bài trên

2 tháng 8 2017

đặt A = \(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{99}{3^{99}}+\frac{100}{3^{100}}\)

3A = \(1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{99}{3^{98}}+\frac{100}{3^{99}}\)

3A - A = 2A = \(1+\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}+\frac{1}{3^{99}}\right)-\frac{100}{3^{100}}\)

biểu thức trong dấu ngoặc nhỏ hơn \(\frac{1}{2}\)( tự chứng minh ) nên 2A < 1 + \(\frac{1}{2}\)

\(\Rightarrow A< \frac{3}{4}\)

19 tháng 10 2016

Mẫu số = \(1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+2016}\)

\(=1+\frac{1}{\left(1+2\right).2:2}+\frac{1}{\left(1+3\right).3:2}+...+\frac{1}{\left(1+2016\right).2016:2}\)

\(=1+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{1}{2016.2017}\)

\(=2.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2016.2017}\right)\)

\(=2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}\right)\)

\(=2.\left(1-\frac{1}{2017}\right)\)

\(=\frac{2.2016}{2017}\)

Vậy phân số đề bài cho \(=\frac{2.2016}{\frac{2.2016}{2017}}=2.2016.\frac{2017}{2.2016}=2017\)

4 tháng 8 2019

a. \(25^3:5^2\)
\(=\left(5^2\right)^3:5^2\)
\(=5^6:5^2=5^4\)
b. \(\left(\frac{3}{7}\right)^{21}:\left(\frac{9}{49}\right)^6\)
\(=\left(\frac{3}{7}\right)^{21}:\left[\left(\frac{3}{7}\right)^2\right]^6\)
\(=\left(\frac{3}{7}\right)^{21-\left(2+6\right)}=\left(\frac{3}{7}\right)^{21-12}=\left(\frac{3}{7}\right)^9\)

4 tháng 8 2019

\(a,25^3:5^2\)

=\(\left(5^2\right)^3:5^2\)

=\(5^6:5^2\)

=\(5^4\)

\(b,\left(\frac{3}{7}\right)^{21}:\left(\frac{9}{49}\right)^6\)

=\(\left(\frac{3}{7}\right)^{21}:\left[\left(\frac{3}{7}\right)^2\right]^6\)

\(=\left(\frac{3}{7}\right)^{21}:\left(\frac{3}{7}\right)^{12}\)

\(=\left(\frac{3}{7}\right)^9\)

\(c,3-\left(\frac{6}{7}\right)^0+\left(\frac{1}{2}\right)^2:2\)

=\(3-1+\frac{1}{4}:2\)

\(=2+\frac{1}{4}\cdot\frac{1}{2}\)

\(=2+\frac{1}{8}\)

\(=\frac{17}{8}\)

\(d,\left(-\frac{7}{4}:\frac{5}{8}\right)\cdot\frac{11}{16}\)

\(=\left(-\frac{7}{4}\cdot\frac{8}{5}\right)\cdot\frac{11}{16}\)

\(=-\frac{14}{5}\cdot\frac{11}{16}\)

\(=-\frac{77}{40}\)

\(e,\frac{2}{3}+\frac{1}{3}\cdot\frac{-6}{10}\)

\(=\frac{2}{3}-\frac{1}{5}\)

\(=\frac{7}{15}\)

26 tháng 8 2016

1/12+22 + 1/22+32 + 1/32+42 + ... + 1/102+112

< 1/12+12 + 1/22+22 + 1/32+32 + ... + 1/102+102

< 1/2.12 + 1/2.22 + 1/2.32 + ... + 1/2.102

< 1/2.(1/12 + 1/22 + 1/32 + ... + 1/102)

< 1/2.(1 + 1/1.2 + 1/2.3 + ... + 1/9.10)

< 1/2.(1 + 1 - 1/2 + 1/2 - 1/3 + ... + 1/9 - 1/10)

< 1/2.(2 - 1/10)

< 1/2.(20/10 - 1/10)

< 1/2.19/10

< 19/20

Hình như bn chép sai đề

25 tháng 11 2016

Ta thấy các phân số của tổng S khi quy đồng mẫu số chứa lũy thừa của 2 với số mũ lớn nhất là 24

Như vậy, khi quy đồng mẫu số, các phân số của S đều có tử chẵn, chỉ có phân số \(\frac{1}{16}\) có tử lẻ

Do đó S có tử lẻ mẫu chẵn, không là số tự nhiên (đpcm)

25 tháng 11 2016

help me every body! Thanks