K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2015

có: \(x^2+y^2\ge2xy\left(BDTCauchy\right)\)
\(x^2+z^2\ge2xz\)
\(y^2+z^2\ge2yz\)
Cộng vế với vế \(\Rightarrow x^2+y^2+z^2\ge xy+xz+yz\)
\(\Rightarrow\left(x+y+z\right)^2\ge3\left(xy+xz+yz\right)\)
\(\Rightarrow\frac{a^2}{3}\ge xy+xz+yz\)
MaxM=a2/3 
Dấu "=" xảy ra <=> x=y=z=1/3a

13 tháng 12 2015

dung cói thoi
\(\left(x+y+z\right)^2=a^2\ge3\left(xy+yz+zx\right)\)
\(\Rightarrow M\le\frac{a^2}{3}\)

dÂUs = xảy ra khi va fchir khi x=y=z=a/3

29 tháng 6 2020

Ta có: \(3=x^2+y^2+z^2\ge xy+yz+xz\ge\frac{\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)^2}{3}\)

=> \(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\le3\)

\(M=\frac{xyz}{x^2+yz}+\frac{xyz}{y^2+zx}+\frac{xyz}{z^2+xy}\)

\(\le\frac{xyz}{2x\sqrt{yz}}+\frac{xyz}{2y\sqrt{xz}}+\frac{xyz}{2z\sqrt{xy}}\)

\(=\frac{1}{2}\left(\sqrt{yz}+\sqrt{xz}+\sqrt{xy}\right)\le\frac{3}{2}\)

Dấu "=" xảy ra <=> x = y = z=1

17 tháng 4 2017

Gọi cái cần tìm min là P

Ta có:

\(\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)\)

\(\Rightarrow xy+yz+zx\ge\frac{\left(x+y+z\right)^2-27}{2}\)

\(\Rightarrow P\ge\left(x+y+z\right)+\frac{\left(x+y+z\right)^2-27}{2}\)

\(=\frac{\left(x+y+z+1\right)^2}{2}-14\ge-14\)

Vậy min của P = - 14

17 tháng 4 2017

min của P = -14

31 tháng 10 2020

Áp dụng bất đẳng thức AM-GM:

\(yz\sqrt{x-1}=yz\sqrt{\left(x-1\right)1}\le yz\frac{\left(x-1\right)+1}{2}=\frac{xyz}{2}\);

\(zx\sqrt{y-4}=\frac{zx}{2}\sqrt{\left(y-4\right)4}\le\frac{zx}{2}\frac{\left(y-4\right)+4}{2}=\frac{xyz}{4}\);

\(xy\sqrt{z-9}=\frac{xy}{3}\sqrt{\left(z-9\right)9}\le\frac{xy}{3}\frac{\left(z-9\right)+9}{2}=\frac{xyz}{6}\)

\(\Rightarrow\frac{yz\sqrt{x-1}+zx\sqrt{y-4}+xy\sqrt{z-9}}{xyz}\le\frac{\frac{xyz}{2}+\frac{xyz}{4}+\frac{xyz}{6}}{xyz}\)\(=\frac{1}{2}+\frac{1}{4}+\frac{1}{6}=\frac{11}{12}\)

Vậy \(P_{max}=\frac{11}{12}\)

Dấu "=" xảy ra khi \(x=2;y=8;z=18\)

28 tháng 9 2021

Tham khảo:

Cho 3 số thức x,y,z thỏa mãn \(x\ge1;y\ge4;z\ge9\) tìm giá trị lớn nhất của biết thức Q=\(\dfrac{yz\sqrt{x-1}+zx\sqrt... - Hoc24

20 tháng 2 2018

đáp án

Không có văn bản thay thế tự động nào.

8 tháng 1 2021

chia cả 2 vế của giả thiết cho xyz rồi đặt 1/x ; 1/y ; 1/z => a ; b ; c

đến đây thì tự làm tiếp đi 

20 tháng 2 2022

\(\dfrac{x+y}{z}+\dfrac{y+z}{x}+\dfrac{x+z}{y}=\dfrac{x^2y+xy^2+y^2z+yz^2+x^2z+xz^2}{xyz}=\dfrac{-3xyz}{xyz}=-3\)

đề cho xy+yz+xz=0 nhân cả 2 vế với -z

=>-xyz-\(z^2\left(y+x\right)\)=0

=>-xyz=\(z^2x+z^2y\)

cmtt bạn nhân với -y và -z

=>-3xyz=\(x^2y+xy^2+y^2z+yz^2+x^2z+xz^2\)