K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2016

\(A=5x^2z-10xyz+5y^2z=5z\left(x^2-2xy+y^2\right)=5z\left(x-y\right)^2\)

Thay x = 124, y = 24, z = 2 vào A, ta có:

\(5\times2\times\left(124-24\right)^2=10\times100^2=10\times10000=100000\)

Vậy A = 10 000 khi x = 124, y = 24, z = 2.

\(B=2x^2+2y^2-x^2z-y^2z+z-2=2\left(x^2+y^2-1\right)-z\left(x^2+y^2-1\right)=\left(2-x\right)\left(x^2+y^2-1\right)\)

Thay x = 1, y = 1, z = - 1 vào B, ta có:

\(B=\left[2-\left(-1\right)\right]\left(1^2+1^2-1\right)=3\times1=3\)

Vậy B = 3 khi x = 1, y = 1, z = - 1.

 

29 tháng 8 2016

\(P=x^3\left(z-y^2\right)+y^3\left(x-z^2\right)+z^2\left(y-x^2\right)+xyz\left(xyz-1\right)\)

\(P=x^3z-x^3y^2+xy^3-y^3z^2+yz^2-x^2z^2+x^2y^2z^2-xyz\)

29 tháng 8 2016

cám ơn nhiều 

6 tháng 7 2016

1. undefined

 

18 tháng 12 2017

Ta có

x2+y2+z2=1

(x2+y2+z2)2=1

x4+y4+z4+2x2y2+2y2z2+2x2z2=1 (1)

Ta có

\(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\)=0

\(\dfrac{\text{x^2y^2+y^2z^2+x^2}z^2}{x^2y^2z^2}=0\)

x2y2+y2z2+x2z2=0 (2)

Từ (1) và(2) suy ra

x4+y4+z4=1

26 tháng 10 2016

Áp dụng tính chất \(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\) ta đc

\(x^3+y^3+z^3-3xyz=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)

                                       \(=\left(x+y\right)^3+z^3-3xy\left(x+y+z\right)\)

                                        \(=\left(x+y+z\right)^3-3\left(x+y\right)z\left(x+y+z\right)-3xy\left(x+y+z\right)\)

                                       \(=\left(x+y+z\right)^3-\left(x+y+z\right)\left(3xz-3yz-3xy\right)\)

                                      \(=\left(x+y+z\right)\left[\left(x+y+z\right)^2-3xz-3yz-3xy\right]\)

                                       \(=\left(x+y+z\right)\left(x^2+y^2+x^2+2xy+2yz+2xz-3xz-3yz-3xy\right)\)

                                        \(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)

3 tháng 9 2018

\(x^3+y^3+z^3-3xyz\)

\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)

\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

7 tháng 7 2016

\(A=x^2-y^2-x+y\)

\(=\left(x^2-y^2\right)-\left(x-y\right)\)

\(=\left(x+y\right)\left(x-y\right)-\left(x-y\right)\)

\(=\left(x+y-1\right)\left(x-y\right)\)

\(B=ax-ab+b-x\)

\(=\left(ax-ab\right)-\left(x-b\right)\)

\(=a\left(x-b\right)-\left(x-b\right)\)

\(=\left(a-1\right)\left(x-b\right)\)

\(D=x^2-2xy+y^2-m^2+2mn-n^2\)

\(=\left(x^2+y^2-2xy\right)-\left(m^2+n^2-2mn\right)\)

\(=\left(x-y\right)^2-\left(m-n\right)^2\)

\(=\left(x-y-m+n\right)\left(x-y+m-n\right)\)

\(E=x^2-y^2-2yz-z^2\)

\(=x^2-\left(y^2+z^2+2yz\right)\)

\(=x^2-\left(y-z\right)^2\)

\(=\left(x+y-z\right)\left(z-y+z\right)\)

7 tháng 7 2016

 \(=>A=\left(x-y\right)\left(x+y\right)-\left(x-y\right)\\ =>A=\left(x-y\right)\left(x+y-1\right)\) ( dấu phía sau bị lỗi nha )

\(=>B=a\left(x-b\right)-\left(x-b\right)\\ =>B=\left(x-b\right)\left(a-1\right)\)

\(=>C=\left(a+b+c\right)\left(3x^2+36xy+108y^2\right)\)

\(=>C=3\left(a+b+c\right)\left(x^2+12xy+36y^2\right)\\ =>C=3\left(a+b+c\right)\left(x+6y\right)^2\)

\(\Rightarrow D=\left(x-y\right)^2-\left(m^2-2mn+n^2\right)\\ =>D=\left(x-y\right)^2-\left(m-n\right)^2\)

\(=>D=\left(x-y+m-n\right)\left(x-y-m+n\right)\)

\(=>E=x^2-\left(y^2+2yz+z^2\right)\\ =>E=x^2-\left(y+z\right)^2\)

\(=>E=\left(x-y-z\right)\left(x+y+z\right)\)

T I C K ủng hộ nha

CHÚC BẠN HỌC TỐT

3 tháng 8 2016

Bài quá dễ mà đăng lên làm gì?

3 tháng 8 2016

A= (4x2 + y2).[(2x)2 - y2] = (4x2 +y2)(4x2 - y2) = (4x2)2 _ (y2)= 16x4 - y4