Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
Nếu \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow\frac{ad}{bd}< \frac{cb}{db}\)
\(\Leftrightarrow ad< cd\left(dpcm\right)\)
2
Nếu \(ad< bc\Leftrightarrow\frac{ad}{bd}< \frac{bc}{bd}\)
\(\Leftrightarrow\frac{a}{b}< \frac{c}{d}\left(dpcm\right)\)
18/31 giữ nguyên . 181818/313131=18 nhân 10101/31 nhân 10101 = 18/31
18/31=181818/313131
Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
tick cho mình nhé
b) -1/3 = -4/12 (1)
-1/4 = -4/16 (2)
Từ (1) (2) suy ra -4/12 < -4/13 < -4/14 < -4/15 < -4/16
Vậy 3 số hữa tỉ xen giữa -1/3 và -1/4 là -4/13 ; -4/14 ; -4/15
Vì a/b < c/d nên ad < bc (1)
Xét tích a.(b+d) = ab.ad (2)
b.(a+c) = ba.bc (3)
Từ (1) (2) (3) suy ra a.(b+d) < b.(a+c) => a/b < a+c/b+d (4)
Từ (4) suy ra a+c/b+d < c/d (5)
Từ (4) (5) suy ra a/b < a+c/b+d < c/d
Ta có:a/b<c/d =>ad<bc (1)
Thêm ab vào (1) ta đc:
ad+ab<bc+ab hay a(b+d)<b(a+c) =>a/b<a+c/b+d (2)
Thêm cd vào 2 vế của (1), ta lại có:
ad+cd<bc+cd hay d(a+c)<c(b+d) => c/d>a+c/b+d (3)
Từ (2) và (3) suy ra:a/b<a+c/b+d<c/d
\(\frac{a}{b}<\frac{c}{d}\)\(\Rightarrow ad\)<bc
=>ad+ab<bc+ab
=>a(b+d)<b(a+c)
=>\(\frac{a}{b}<\frac{a+c}{b+d}\)
ad<bc
=>ad+cd<bc+cd
=>d(a+c)<c(b+d)
=>\(\frac{a+c}{b+d}<\frac{c}{d}\)
=>đpcm
\(\frac{-1}{3}=\frac{-16}{48}<\frac{-15}{48};\frac{-14}{48};\frac{-13}{48}\)\(<\frac{-12}{48}=\frac{-1}{4}\)
a/b < c/d => ad < bc => ad + ab < bc + ab => a ( b + d ) < b ( a + c ) => a/b < a+c/b+d ad < bc => ad + cd < bc + cd => d ( a + c ) < c ( b + d ) => a+c/b+d < c/d => dmcp -1/3 = -16/48 < -15/48 ; 14/48 , 13/48 < -12/48 = -1/4
a) \(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\)
\(\Rightarrow ad+bc< bc+ab\)
\(\Rightarrow a\left(b+d\right)< b\left(a+c\right)\)
\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\)
\(ad< bc\)
\(\Rightarrow ad+cd< bc+cd\)
\(\Rightarrow d\left(a+c\right)< c\left(b+d\right)\)
\(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\)
\(\Rightarrowđpcm\)
b) \(-\frac{1}{3}=-\frac{16}{48}< -\frac{15}{48};-\frac{14}{48};-\frac{13}{48}< -\frac{12}{48}=-\frac{1}{4}\)
a) \(b>0,d>0\) nên \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< bc\Leftrightarrow\hept{\begin{cases}ab+ad< bc+ab\\cd+ad< bc+cd\end{cases}\Leftrightarrow\hept{\begin{cases}a\left(b+d\right)< b\left(a+c\right)\\d\left(a+c\right)< c\left(b+d\right)\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{a}{b}< \frac{a+c}{b+d}\\\frac{a+c}{b+d}< \frac{c}{d}\end{cases}}\)----> ĐPCM
b) \(\frac{1}{3}=\frac{4}{12},\frac{1}{4}=\frac{4}{16}\)Vậy 3 số hữu tỉ cần tìm là \(\frac{4}{13},\frac{4}{14},\frac{4}{15}\)