K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
14 tháng 12 2018
\(\hept{\begin{cases}\left[a,b\right]=300\\\left(a,b\right)=15\end{cases}}\Rightarrow ab=\left[a,b\right]\left(a,b\right)=300.15=4500\)
\(\left(a,b\right)=15\Leftrightarrow a=15m;b=15n\left[\left(m,n\right)=1\right]\)
\(\Rightarrow ab=15m15n=4500\)
\(\Rightarrow ab=225mn=4500\)
\(\Rightarrow mn=4500\div225\)
\(\Rightarrow mn=20\)
Sau đó bn tính a , b là xong
15 tháng 11 2017
gọi ƯCLN[a,b]=d
a=dm,b=dn [ƯCLN[m,n]=1]
BCNN[a,b]=d.m.n
=>d+d.m.n=114
=>d.[m.n+1]=114
=>d thuộc Ư [114]= {1;2;3;6;19;38;57;114}
nếu d=1=>mn+1=114
=>mn=113=1.113
CH
Cô Hoàng Huyền
Admin
VIP
29 tháng 3 2018
Em tham khảo tại link dưới đây nhé.
Câu hỏi của phạm văn quyết tâm - Toán lớp 6 - Học toán với OnlineMath
Ta có công thức: ưcln(a,b) x bcnn(a,b) = a x b
Vì ưcln(a,b) + bcnn(a,b) = 48, nên ta có thể giải hệ phương trình:
{
ưcln(a,b) x bcnn(a,b) = a x b
ưcln(a,b) + bcnn(a,b) = 48
}
Gọi d là ưcln(a,b) và k là bcnn(a,b), ta có:
d x k = a x b
d + k = 48
Ta cần tìm hai số nguyên dương a và b sao cho d x k = a x b và d + k = 48.
Vì d và k là ước số chung lớn nhất và bội số chung nhỏ nhất của a và b, nên ta có thể sử dụng các giá trị của d và k để tìm a và b.
Ta có thể thử các giá trị của d và k để tìm a và b. Ví dụ, nếu d = 8 và k = 40, thì ta có:
a = d x (a/d) = 8 x (a/8)
b = k x (b/k) = 40 x (b/40)
Vì d x k = a x b, nên ta có:
8 x 40 = (8 x a/8) x (40 x b/40)
Tương đương với:
320 = a x b
Để tìm các giá trị nguyên dương của a và b sao cho a x b = 320, ta có thể liệt kê các cặp số nguyên dương (a, b) thỏa mãn điều kiện này. Các cặp số này là:
(1, 320), (2, 160), (4, 80), (5, 64), (8, 40), (10, 32), (16, 20)
Trong số các cặp số này, chỉ có cặp (8, 40) thỏa mãn điều kiện d + k = 48. Vậy, ta có:
d = 8, k = 40, a = 64, b = 5
Vậy, a = 64 và b = 5 là các giá trị thỏa mãn điều kiện ưcln(a,b) + bcnn(a,b) = 48.