Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho a và b là hai số không nguyên tố cùng nhau : a=4n+3 ; b=5n +1(n thuộc số tự nhiên) tìm ƯCLN(a,b)
Gọi ƯCLN(4n+3; 5n+1) là d. Ta có:
4n+3 chia hết cho d => 20n+15 chia hết cho d
5n+1 chia hết cho d => 20n+4 chia hết cho d
=> 20n+15-(20n+4) chia hết cho d
=> 11 chia hết cho d
=> d thuộc Ư(11)
=> d thuộc {1; -1; 11; -11}
Mà 4n+3 và 5n+1 không nguyên tố cùng nhau
=> d = 11
=> ƯCLN(4n+3; 5n+1) = d
Gọi ƯCLN(4n+3; 5n+1) là d. Ta có:
4n+3 chia hết cho d => 20n+15 chia hết cho d
5n+1 chia hết cho d => 20n+4 chia hết cho d
=> 20n+15-(20n+4) chia hết cho d
=> 11 chia hết cho d
=> d thuộc Ư(11)
=> d thuộc {1; -1; 11; -11}
Mà 4n+3 và 5n+1 không nguyên tố cùng nhau
=> d = 11
=> ƯCLN(4n+3; 5n+1) = d
Chúc bạn học tốt
Gọi ƯCLN(4n+3; 5n+1) là d. Ta có:
4n+3 chia hết cho d => 20n+15 chia hết cho d
5n+1 chia hết cho d => 20n+4 chia hết cho d
=> 20n+15-(20n+4) chia hết cho d
=> 11 chia hết cho d
=> d thuộc Ư(11)
=> d thuộc {1; -1; 11; -11}
Mà 4n+3 và 5n+1 không nguyên tố cùng nhau
=> d = 11
=> ƯCLN(4n+3; 5n+1) = d
1/ Gọi ƯCLN( a, b) = d (d số tự nhiên>1)--> 4n + 3 chia hết cho d và 5n + 1 chia hết cho d
-> 20n + 15 chia hết cho d và 20n + 4 chia hết cho d --> (20n + 15) - (20n + 4) chiahết cho d
--> 15 - 4 chia hết cho d --> 11 chia hết cho d --> d = 11 (d0 d > 1)
2/ ab = ƯCLN(a,b).BCNN(a, b) = 2940 --> ƯCLN(a, b) = 2940:BCNN(a,b) = 2940:210 = 14
ƯCLN(a, b) = 14 --> a = 14a' và b= 14b' , trong đó a' và b' là hai số nguyên tố cùng nhau
--> ab = 14a'.14b' = 196a'.b' --> a'.b' = 15 = 15.1; 5.3 vì a> b --> a'>b' .
Nếu: a' = 15 --> a = 14.15 =210
b' = 1 ----> b = 14b' = 14.
Nếu :a' = 5 --> a = 14.a' = 70
Gọi ƯCLN(4n+3; 5n+1) là d. Ta có:
4n+3 chia hết cho d => 20n+15 chia hết cho d
5n+1 chia hết cho d => 20n+4 chia hết cho d
=> 20n+15-(20n+4) chia hết cho d
=> 11 chia hết cho d
=> d thuộc Ư(11)
=> d thuộc {1; -1; 11; -11}
Mà 4n+3 và 5n+1 không nguyên tố cùng nhau
=> d = 11
=> ƯCLN(4n+3; 5n+1) = d
Chúc bạn học tốt
Cho a và b là hai số không nguyên tố cùng nhau : a=5n+3 ; b=6n +1(n thuộc số tự nhiên) tìm ƯCLN(a,b)
Đặt ƯCLN ( a,b ) = d ( d thuộc N )
Thay a = 5n + 3 , b = 6n + 1
=> \(\hept{\begin{cases}5n+3⋮d\\6n+1⋮d\end{cases}}\)=> \(\hept{\begin{cases}6.\left(5n+3\right)⋮d\\5.\left(6n+1\right)⋮d\end{cases}}\)=> \(\hept{\begin{cases}30n+18⋮d\\30n+5⋮d\end{cases}}\)=> ( 30n + 18 ) - ( 30n + 5 ) \(⋮d\)
=> 13 \(⋮\)d => d thuộc Ư ( 13 ) = { 1 ; 13 } mà d lớn nhất => d = 13
ƯCLN ( 5n + 3 ; 6n + 1 ) = 13 hay ƯCLN ( a , b ) = 13
Vậy ƯCLN ( a , b ) = 13
a/GỌI ƯCLN CỦA A VÀ B LÀ D
ƯCLN (4n+3;5n+1)=D
suy ra {4n+3 chia hết cho D
{5n+1 chia hết cho D
suy ra{5(4n+3) chia hết cho D
{4(5n+1) chi hết cho D
suy ra 5(4n+3)-4(5n+1) chia hết cho D
suy ra (20n+3)-(20n+1) chia hết cho D
suy ra 3 - 1 chia hết cho D
suy ra 2 chia hết cho D
SUY RA D thuộc Ư(2)
suy ra D =2 (tm đề bài)
VẬY ƯCLN của (a;b) = 2
Gọi ƯCLN(4n+3; 5n+1) là d. Ta có:
4n+3 chia hết cho d => 20n+15 chia hết cho d
5n+1 chia hết cho d => 20n+4 chia hết cho d
=> 20n+15-(20n+4) chia hết cho d
=> 11 chia hết cho d
=> d thuộc Ư(11)
=> d thuộc {1; -1; 11; -11}
Mà 4n+3 và 5n+1 không nguyên tố cùng nhau
=> d = 11
=> ƯCLN(4n+3; 5n+1) = d
Chúc bạn học tốt
Gọi ƯCLN(4n+3; 5n+1) là d. Ta có:
4n+3 chia hết cho d => 20n+15 chia hết cho d
5n+1 chia hết cho d => 20n+4 chia hết cho d
=> 20n+15-(20n+4) chia hết cho d
=> 11 chia hết cho d
=> d thuộc Ư(11)
=> d thuộc {1; -1; 11; -11}
Mà 4n+3 và 5n+1 không nguyên tố cùng nhau
=> d = 11
=> ƯCLN(4n+3; 5n+1) = d
Chúc bạn học tốt